Skip to main content
Log in

Temperature Studies of Hall Field Sensors Based on Nanosized Silicon-on-Insulator Heterostructures

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Microelectronics is one of the industries that have been developing at a record pace in recent decades. The most important role in the development of the digital economy is played by the development and organization of the production of a new generation of microelectronic sensors of external influences and microsystems based on them. Due to the need to operate such devices under various conditions, including wide temperature ranges, determining the ranges of their reliable operation is an urgent task. Thermal studies are carried out using the previously constructed two-level mathematical model of a Hall field sensor (HFS) based on a silicon-on-insulator (SOI) heterostructure. The results of computational and experimental studies of the influence of temperature on the characteristics of the SOI HFS are presented. The possibility of operation of the sensor in a wide temperature range is shown. Parametric identification of the mathematical model developed by the authors based on the experimental data is carried out. The sensitivity function of the electric current to temperature change is determined. The proposed approach makes it possible to estimate the required sensitivity of the sensor to determine the temperature with the given accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Abgaryan, K.K. and Reviznikov, D.L., Vychislitel’nyye algoritmy v zadachakh modelirovaniya i optimizatsii poluprovodnikovykh geterostruktur (Computational Algorithms in Problems of Simulation and Optimization of Semiconductor Heterostructures), Moscow: MAKS Press, 2016.

  2. Abgaryan, K.K. and Reviznikov, D.L., Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects, Comput. Math. Math. Phys., 2016, vol. 56, no. 1, p. 161. https://doi.org/10.1134/S0965542516010048

    Article  MathSciNet  MATH  Google Scholar 

  3. Abgaryan, K.K., Mutigullin, I.V., and Reviznikov, D.L., Computational model of 2DEG mobility in the AlGaN/GaN heterostructures, Phys. Status Solidi C, 2015, vol. 12, nos. 4–5, pp. 460–465. https://doi.org/10.1002/PSSC.201400200

    Article  Google Scholar 

  4. Abgaryan, K.K., Mutigullin, I.V., and Reviznikov, D.L., Theoretical investigation of 2DEG concentration and mobility in the AlGaN/GaN heterostructures with various Al concentrations, Phys. Status Solidi C, 2015, vol. 12, no. 12, pp. 1376–1382. https://doi.org/10.1002/PSSC.201510159

    Article  Google Scholar 

  5. Mordkovich, V.N., Abgaryan, K.K., Reviznikov, D.L., and Leonov, A.V., Simulation of hall field elements based on nanosized silicon-on-insulator heterostructures, Russ. Microelectron., 2021, vol. 50, no. 8, 617–622. https://doi.org/10.1134/S1063739721080059

    Article  Google Scholar 

  6. Mordkovich, V.N., Sensors based on “silicon on insulator” structures, Elektron. Tekh., Ser. 2: Poluprovodn. Prib., 2008, no. 2 (221), pp. 34–44.

  7. Huijsing, I.H., in Smart Sensor Systems, Meiyer, G.C.M., Ed., Great Britain: Wiley, 2008, Chap. 1. https://doi.org/10.1002/9780470866931.CH1

  8. Balakrishnan, V., Phan, H.-P., Dinh, T., Dao, D.V., and Nguyen, N.-T., Sensors for harsh environments, Sensors, 2017, vol. 17, no. 9, pp. 2060–2092. https://doi.org/10.3390/s17092061

    Article  Google Scholar 

  9. Baumgartner, A., Ihn, T., Ensslin, K., Papp, G., Peeters, F., Maranowski, K., and Gossard, A.C., Classical Hall effect in scanning gate experiments, Phys. Rev. B, 2006, vol. 74, p. 165426. https://doi.org/10.1103/PhysRevB.74.165426

    Article  Google Scholar 

  10. Shcherbachev, K.D., Bublik, V.T., Mordkovich, V.N., and Pazhin, D.M., Specific features of formation of radiation defects in the silicon layer in “silicon-on-insulator” structures, Semiconductors, 2011, vol. 45, no. 6, pp. 738–742.

    Article  Google Scholar 

  11. Mordkovich, V.N., Pazhin, D.M., Gromov, D.V., and Skorobogatov, P.C., Relaxation effects in field hall sensor influence of impulse ionizing irradiation, Elektron. Tekh., Ser. 2: Poluprovodn. Prib., 2011, no. 1 (226), pp. 19–26.

  12. Korolev, M.A., Kozlov, A.V., and Petrunina, S.S., Functioning features of the SOI field-effect hall sensor designed for application in telecommunications networks, Tr. MFTI, 2015, vol. 7, no. 3, pp. 91–95.

    Google Scholar 

  13. Korolev, M.A., Pavlyuk, M.I., and Devlikanova, S.S., Physical model of SOI field-effect Hall sensor, Izv. Vyssh. Uchebn. Zaved., Elektron., 2017, vol. 22, no. 2, pp. 166–170. https://doi.org/10.24151/1561-5405-2017-22-2-166-170

    Article  Google Scholar 

  14. Popovich, R.S., Hall Effect Devices, Bristol: Inst. Phys., 2004, 2nd ed.

    Book  Google Scholar 

  15. Leonov, A.V., Malykh, A.A., Mordkovich, V.N., and Pavlyuk, M.I., A Magnetosensitive thin-film silicon Hall-type field-effect transistor with operating temperature range expanded up to 350°C, Tech. Phys. Lett., 2016, vol. 42, no. 2, pp. 71–74.

    Article  Google Scholar 

  16. Leonov, A.V., Malykh, A.A., Mordkovich, V.N., and Pavlyuk, M.I., Field controlled Si hall element with extended operation temperature range from liquid helium temperature up to 650 K, Proc. Eng., 2015, vol. 120, pp. 1197–1200. https://doi.org/10.1016/J.PROENG.2015.08.786

    Article  Google Scholar 

  17. Stengel, F., Noor Mohammad, S., and Morkoc, H., Theoretical investigation of electrical characteristics of AlGaN/GaN modulation doped field-effect transistors, J. Appl. Phys., 1996, vol. 80, no. 5, pp. 3031–3042. https://doi.org/10.1063/1.363162

    Article  Google Scholar 

  18. Naumova, O.V., Zaitseva, E.G., Fomin, B.I., Ilnitsky, M.A., and Popov, V.P., Density dependence of electron mobility in the accumulation mode for fully depleted SOI films, Semiconductors, 2015, vol. 49, no. 10, pp. 1316–1322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Abgaryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abgaryan, K.K., Leonov, A.V. & Reviznikov, D.L. Temperature Studies of Hall Field Sensors Based on Nanosized Silicon-on-Insulator Heterostructures. Russ Microelectron 51, 637–643 (2022). https://doi.org/10.1134/S1063739722080108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722080108

Keywords:

Navigation