Skip to main content
Log in

Study of the Thermal Stability of Copper Contact Junctions in Si/SiO2 Substrates

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The results of a comprehensive study of the structural-morphological and thermodynamic characteristics of the electrochemical precipitation of Cu in transition holes with a barrier layer of TiN in Si/SiO2 substrates by scanning electron microscopy (SEM) and differential thermal analysis (DTA) are presented. The temperature range that determines the heat resistance of copper (up to 750°C) and the temperature range (up to 886°C) that determines the thermal stability of the composite as a whole, as well as the ability to maintain the chemical composition and ordered structure at elevated temperatures, are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. RTT was carried out in two stages: first at a temperature of 650°C for 30 s, then at 850°C for 30 s.

REFERENCES

  1. Cheng, Yi.-L., Lee, Ch.-Ye., and Huang, Ya.-L., Noble and precious metals—properties, nanoscale effects and applications, in Copper Metal for Semiconductor Interconnects, Rijeka: IntechOpen, 2018, Chap. 10. https://doi.org/10.5772/intechopen.69142

  2. Wolf, M.J., Dretschkow, T., Wunderle, B., et al., High aspect ratio TSV copper filling with different seed layers, in Proceedings of the ECTC: Electronic Components and Technology Conference, May 27–30, 2008, Lake Buena Vista, FL: IEEE, 2008, pp. 563–570.

  3. Radisic, A., Luhn, O., Philipsen, H.G.G., et al., Copper plating for 3D interconnects, Microelectron. Eng., 2011, vol. 88, pp. 701–704. https://doi.org/10.1016/j.mee.2010.06.030

    Article  Google Scholar 

  4. Electroless Plating: Fundamentals and Applications, Mallory, G.O. and Hajdu, J.B., Orlando: Am. Electroplaters Surf. Finishers Soc., 1990.

  5. Toimil-Molares, M.E., Buschmann, V., Dobrev, D., et al., Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Adv. Mater., 2001, vol. 13, pp. 62–65. https://doi.org/10.1002/chin.200118218

    Article  Google Scholar 

  6. Edelstein, D., Heidenreich, J., Goldblatt, R., et al., Full copper wiring in a sub-0.25 μm CMOS ULSI technology, in Proceedings of the IEEE International Electron Device Meeting, New York: IEEE, 1997, pp. 773–776.

  7. Edelstein, D.C., Sai-Halasz, G.A., and Mii, Y.J., LSL on-chip interconnection performance simulations and measurements, IBM J. Res. Dev., 1995, vol. 39, pp. 383–401. https://doi.org/10.1147/rd.394.0383

    Article  Google Scholar 

  8. Song, C., Wang, Z., Chen, Q., et al., High aspect ratio copper through-silicon-vias for 3D integration, Microelectron. Eng., 2008, vol. 85, pp. 1952–1956. https://doi.org/10.1016/j.mee.2008.05.017

    Article  Google Scholar 

  9. Radisic, A., Cao, Y., Taephaisitphongse, P., et al., Direct copper electrodeposition on tan barrier layers, J. Electrochem. Soc., 2003, vol. 150, no. 5, pp. C362–C367. https://doi.org/10.1149/1.1565137

    Article  Google Scholar 

  10. Moffat, T.P., Walker, M., Chen, P.J., et al., Electrodeposition of Cu on Ru barrier layers for damascene processing, J. Electrochem. Soc., 2006, vol. 153, no. 1, pp. C37–C50. https://doi.org/10.1149/1.2131826

    Article  Google Scholar 

  11. Park, K.-S. and Kim, S., Seedless copper electrodeposition onto tungsten diffusion barrier, J. Electrochem. Soc., 2010, vol. 157, pp. D609–D613. https://doi.org/10.1149/1.3491351

    Article  Google Scholar 

  12. Mei, Q.S. and Lu, K., Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater. Sci., 2007, no. 52, pp. 1175–1262. https://doi.org/10.1016/j.pmatsci.2007.01.001

  13. Shilyaeva, Yu.I., Bardushkin, V.V., Gavrilov, S.A., et al., Melting temperature of metal polycrystalline nanowires electrochemically deposited into the pores of anodic aluminum oxide, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 19394–19401. https://doi.org/10.1039/C4CP02436B

    Article  Google Scholar 

  14. Shilyaeva, Yu., Gavrilov, S., Dudin, A., et al., Anodic aluminium oxide templates for synthesis and study of thermal behaviour of metallic nanowires, Surf. Interface Anal., 2015. https://doi.org/10.1002/sia.5892

  15. Andrievskii, R.A., Nanomaterials: Concept and modern problems, Ross. Khim. Zh., 2002, vol. 46, no. 5, pp. 50–56.

    Google Scholar 

  16. Huber, T., Degischer, H.P., Lefranc, G., et al., Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles, Compos. Sci. Technol., 2006, vol. 66, pp. 2206–2217. https://doi.org/10.1016/j.compscitech.2005.12.012

    Article  Google Scholar 

  17. Wendlandt, W.W., Thermal Methods of Analysis, New York: Wiley, 1974.

    Google Scholar 

  18. Turtsevich, A.S., Kolos, V.V., Adashkevich, S.V.B., et al., Method for forming a titanium disilicide film on a silicon substrate, BY Patent No. 16839 C1, 2013.

  19. Vorobjova, A.I., Labunov, V.A., Utkina, E.A., and Grapov, D.V., Metallization of vias in silicon wafers to produce three-dimensional microstructures, Russ. Microelectron., 2021, vol. 50, no. 1, pp. 8–18. https://doi.org/10.1134/S1063739721010108

    Article  Google Scholar 

  20. Mikolajunas, M., Kaliasasa, R., Andruleviciusb, M., et al., A study of stacked PECVD silicon nitride films used for surface micromachined membranes, Thin Solid Films, 2008, vol. 516, no. 23, pp. 8788–8792. https://doi.org/10.1016/j.tsf.2008.06.063

    Article  Google Scholar 

  21. Shiliang Wang, Xiaolin Huang, Yuehui He, et al., Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene, Carbon, 2012, vol. 2, pp. 21–25. https://doi.org/10.1016/j.carbon.2011.12.063

    Article  Google Scholar 

  22. Ponder, S.M., Darab, J.G., Bucher, J., Caulder, D., Craig, I., Davis, L., et al., Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants, Chem. Mater., 2001, vol. 13, no. 2, pp. 479–486. https://doi.org/10.1021/cm000288r

    Article  Google Scholar 

  23. Liu, X.M. and Zhou, Y.C., Electrochemical synthesis and room temperature oxidation behavior of Cu nanowires, J. Mater. Res., 2005, vol. 20, no. 9, pp. 2371–2378. https://doi.org/10.1557/jmr.2005.0288

    Article  Google Scholar 

  24. Yao Zhi Hu, Sharangpani, R., and Tay, S.-P., In situ rapid thermal oxidation and reduction of copper thin films and their applications in ultralarge scale integration, J. Electrochem. Soc., 2001, vol. 148, no. 12, pp. G669–G675. https://doi.org/10.1149/1.1413480

    Article  Google Scholar 

  25. Li, J., Shacham-Diamand, Y., and Mayer, J.W., Copper deposition and thermal stability issues in copper-based metallization for ULSI technology, MRS Bull., 1993, vol. 98, no. 6, pp. 18–21. https://doi.org/10.1016/0920-2307(92)90011-O

    Article  Google Scholar 

  26. Benito, N. and Flores, M., Evidence of mixed oxide formation on the Cu/SiO2 interface, J. Phys. Chem. C, 2017, vol. 121, pp. 18771–18778. https://doi.org/10.1021/acs.jpcc.7b06563

    Article  Google Scholar 

  27. Gorelik, S.S., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: MISIS, 2005.

  28. Haessner, F., Recrystallization of Metallic Materials, Stuttgart: Max-Plank Inst. Metallforsch., 1971.

    Google Scholar 

  29. Okada, T., Tai, H., and Tagami, M., Early-stage recrystallized grains in copper single crystals deformed in tension along 〈111〉 direction, Mater. Trans., 2017, vol. 58, no. 4, pp. 574–579. https://doi.org/10.2320/matertrans.M2016455

    Article  Google Scholar 

  30. Vasiliev, A.G., Orlikovsky, A.A., Rodatis, V.V., and Horin, I.A., Contact TiSi2 and barrier TiN layers for ULSI multilevel metallization, Russ. Microelectron., 2002, vol. 31, no. 1, pp. 7–12.

    Article  Google Scholar 

  31. Chen, C.H., Yamaguchi, T., Sugawara, K.I., and Koga, K., Role of stress in the self-limiting oxidation of copper nanoparticles, J. Phys. Chem. B, 2005, vol. 109, no. 44, pp. 20669–20672. https://doi.org/10.1021/jp0546498

    Article  Google Scholar 

  32. Anishchik, V.M., Gorushko, V.A., Pilipenko, V.A., et al., Fizicheskie osnovy bystroi termoobrabotki i oborudovanie. Sozdanie mnogourovnevoi metallizatsii (Physical Basis of Rapid Heat Treatment and Equipment. Creating Multilevel Plating), Minsk: Bel. Gos. Univ., 2000.

  33. Murarka, Sh.P., Silicides for VLSI Applications, New York: Academic, 1983.

    Google Scholar 

  34. Gromov, D.G., Gavrilov, S.A., Redichev, E.N., and Ammosov, R.M., Kinetics of the melting-dispersion process in copper thin films, Phys. Solid State, 2007, vol. 49, no. 1, pp. 178–184.

    Article  Google Scholar 

  35. Geguzin, Ya.E., Fizika spekaniya (Physics of Sintering), Moscow: Nauka, 1984.

  36. Mei, Q.S. and Lu, K., Melting and superheating of crystalline solids: From bulk to nanocrystals, Prog. Mater. Sci., 2007, no. 52, pp. 1175–1262. https://doi.org/10.1016/j.pmatsci.2007.01.001

  37. Liu, X., Chen, Q., Dixit, P., Chatterjee, R., et al., Failure mechanisms and optimum design for electroplated copper through-silicon vias (TSV), in Proceedings of the IEEE 2009 Electronic Components and Technology Conference, 2009, pp. 624–629.

  38. Kikoin, I.K., Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Values, Reference Book), Moscow: Atomizdat, 1976.

  39. Ramm, P., Wolf, M.J., Klumpp, A., Wieland, R., et al., Through silicon via technology—processes and reliability for wafer-level 3D system integration, in Proceedings of the 2008 IEEE Electronic Components and Technology Conference, 2009, pp. 241–246. https://doi.org/10.1109/ECTC.2008.4550074.

  40. Gleiter, H., Nanostructured materials: Basic concepts and microstructure, Acta Mater., 2000, vol. 48, pp. 1–29. https://doi.org/10.1016/S1359-6454(99)00285-2

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the staff of OAO Integral for their assistance in manufacturing the experimental samples provided in the joint project of this SSTP.

Funding

This work was supported by the State Scientific and Technical Program “Photonics, Opto- and Microelectronics” and subprogram “Micro- and Nanoelectronics” of the Ministry of Education of the Republic of Belarus.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Vorobieva, E. A. Utkina, A. A. Khodin, O. A. Sycheva or T. I. Ezovitova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobieva, A.I., Labunov, V.A., Utkina, E.A. et al. Study of the Thermal Stability of Copper Contact Junctions in Si/SiO2 Substrates. Russ Microelectron 51, 282–294 (2022). https://doi.org/10.1134/S1063739722050122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722050122

Keywords:

Navigation