Skip to main content
Log in

Molecular Layering of Oxide Nanostructures on the Surface of Metal Matrices

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The generalized results of studying the processes of the formation of nanolayers of silicon, tantalum, aluminum, and chromium oxides obtained by the method of molecular layering (atomic layer deposition) on the surface of metal matrices—tantalum, aluminum and chromium—are presented. The conditions for the layer mechanism of the formation of oxide nanostructures are determined. Their dielectric characteristics are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mannequin, C., Tsuruoka, T., Hasegawa, T., and Aono, M., Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes, Appl. Surf. Sci., 2016, vol. 385, pp. 426–435.

    Article  Google Scholar 

  2. Freeman, Y., Lessner, P., Kramer, A.J., et al., Low voltage specific charge (CV/g) loss in tantalum capacitors, J. Electrochem. Soc., 2010, vol. 157, no. 7, pp. G161–G165.

    Article  Google Scholar 

  3. Ezhovskii, Yu.K., Formation and dielectric properties of nanolayers of tantalum and aluminum oxides, Russ. Microelectron., 2014, vol. 43, no. 1, pp. 42–48.

    Article  Google Scholar 

  4. Jaksic, M.M., Botton, G.A., Papakonstantinou, G.D., et al., Primary oxide latent storage and spillover enabling electrocatalysts with reversible oxygen electrode properties and the alterpolar revertible (PEMFC versus WE) cell, J. Phys. Chem. C, 2014, vol. 118, no. 17, pp. 8723–8746.

    Article  Google Scholar 

  5. Gan, L.-Y. and Zhao, Y.-J., Inverse NiO1–x/Cu catalyst with high activity toward water-gas shift, J. Phys. Chem. C, 2012, vol. 116, no. 30, pp. 16089–16092.

    Article  Google Scholar 

  6. Malygin, A.A., Ermilova, M.M., Gryaznov, V.M., et al., The new catalytic membranes with low sized phosphorus oxide structures on a surface, Desalination, 2002, vol. 144, nos. 1–3, pp. 433–435.

    Article  Google Scholar 

  7. Pauletto, G., Vaccari, A., Groppi, G., et al., FeCrAl as a catalyst support, Chem. Rev., 2020, vol. 120, no. 15, pp. 7516–7550.

    Article  Google Scholar 

  8. Milleret, V., Buzzi, S., Gehrig, P., et al., Protein adsorption steers blood contact activation on engineered cobalt chromium alloy oxide layers, Acta Biomater., 2015, vol. 24, pp. 343–351.

    Article  Google Scholar 

  9. Mas-Moruno, C., Garrido, B., Rodriguez, D., et al., Biofunctionalization strategies on tantalum-based materials for osseointegrative applications, J. Mater. Sci.: Mater. Med., 2015, vol. 26, no. 2, p. 109.

    Google Scholar 

  10. Uslu, E., Öztatlı, H., Garipcan, B., and Ercan, B., Fabrication and cellular interactions of nanoporous tantalum oxide, J. Biomed. Mater. Res., 2020, vol. 108, no. 7, pp. 2743–2753.

    Article  Google Scholar 

  11. Wang, N., Li, H., Wang, J., et al., Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films, ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 9, pp. 4516–4523.

    Article  Google Scholar 

  12. Meng, F., Li, Z., and Liu, X., Synthesis of tantalum thin films on titanium by plasma immersion ion implantation and deposition, Surf. Coat. Technol., 2013, vol. 229, pp. 205–209.

    Article  Google Scholar 

  13. Wang, L., Zhou, B., Liu, Z., et al., Surface hydroxylation regulates cellular osteogeneses on TiO2 and Ta2O5 nanorod films, Colloids Surf., B, 2018, vol. 167, pp. 213–219.

    Article  Google Scholar 

  14. Liu, J., Zhang, Q., Zhang, B., and Yu, M., The bonding mechanism of the micro-interface of polymer coated steel, Polymers, 2020, vol. 12, no. 12, p. 3052.

    Article  Google Scholar 

  15. Zumelzu, E., Rull, F., and Boettcher, A.A., Characterization and micro- and ultra-structural analysis of PET-based Co-rolled composite electrolytic chromium coated steel (ECCS), J. Mater. Process. Technol., 2006, vol. 173, no. 1, pp. 34–39.

    Article  Google Scholar 

  16. Abreu, C.M., Cristóbal, M.J., Losada, R., et al., High frequency impedance spectroscopy study of passive films formed on AISI 316 stainless steel in alkaline medium, J. Electroanal. Chem., 2004, vol. 572, no. 2, pp. 335–345.

    Article  Google Scholar 

  17. Gants, O.Yu., Yudina, A.D., Zhirnova, V.O., et al., Synthesis of ruthenium(IV) oxide on tantalum by atomic layer deposition, Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol., 2020, vol. 63, no. 7, pp. 26–30.

    Google Scholar 

  18. Svintsitskii, D.A., Kibis, L.S., Stadnichenko, A.I., et al., Reactivity and thermal stability of oxidized copper clusters on the tantalum(V) oxide surface, Kinet. Catal., 2013, vol. 54, no. 4, pp. 497–504.

    Article  Google Scholar 

  19. Malygin, A.A., Malkov, A.A., and Sosnov, E.A., Structural-dimensional effects and their application in the ‘core-nanoshell’ systems synthesized by the molecular layering, Russ. Chem. Bull., 2017, vol. 66, no. 11, pp. 1939–1962.

    Article  Google Scholar 

  20. Ahvenniemi, E., Akbashev, A.R., Ali, S., et al., Review article: recommended reading list of early publications on atomic layer deposition—outcome of the ‘Virtual project on the history of ALD,’ J. Vac. Sci. Technol., A, 2017, vol. 35, no. 1, p. 010801.

    Article  Google Scholar 

  21. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., From V.B. Aleskovskii’s ‘framework’ hypothesis to the method of molecular layering/atomic layer deposition, Chem. Vapor Deposit., 2015, vol. 21, no. 10, pp. 216–240.

    Article  Google Scholar 

  22. Ezhovskii, Yu.K., Formation of dielectric nanolayers of aluminum and silicon oxides on AIIIBV semiconductors, Russ. Microelectron., 2019, vol. 48, no. 2, pp. 80–84.

    Article  Google Scholar 

  23. Ezhovskii, Yu.K., Chemical nanotechnology of oxide and nitride low-dimensional structures on a semiconductor matrix, Russ. Microelectron., 2010, vol. 39, no. 3, pp. 182–189.

    Article  Google Scholar 

  24. Machado, E., Kaczmarski, M., Ordejón, P., et al., First-principles analyses and predictions on the reactivity of barrier layers of Ta and TaN toward organometallic precursors for deposition of copper films, Langmuir, 2005, vol. 21, no. 16, pp. 7608–7614.

    Article  Google Scholar 

  25. Hinge, M., Ceccato, M., and Kingshott, P., Electrochemical modification of chromium surfaces using 4‑nitro- and 4-fluorobenzenediazonium salts, New J. Chem., 2009, vol. 33, no. 12, pp. 2405–2408.

    Article  Google Scholar 

  26. Ezhovskii, Yu.K. and Klyuikov, A.I., Evaluation of reactivity of hydroxylic groups at the surface of some metal oxides on the basis of correlation relations, Russ. J. Phys. Chem. A, 1998, vol. 72, no. 5, pp. 804–807.

    Google Scholar 

  27. Gromov, V.K. and Kol’tsov, S.I., Anomalous behavior of the ellipsometric parameters of the substrate-titanium-oxygen layer system, observed in the process of layer synthesis by molecular deposition on the surface of dielectrics, semiconductors, and metals, in Ellipsometriya – metod issledovaniya poverkhnosti (Ellipsometry is a method for studying the surface) (Proceedings of the 2nd All-Union Conference on Ellipsometry is a Method for Studying Physicochemical Processes on the Surface of Solids, Novosibirsk, June 29–July 1, 1981), Rzhanov, A.V., Ed., Novosibirsk: Nauka, 1983, pp. 73–76.

  28. Gromov, V.K., Vvedenie v ellipsometriyu (Introduction to Ellipsometry), Leningrad: Len. Gos. Univ., 1986.

  29. Nefedov, V.I. and Cherepin, V.T., Fizicheskie metody issledovaniya poverkhnosti tverdykh tel (Physical Methods of Solid Surface Study), Moscow: Nauka, 1983.

  30. Nefedov, V.I., Rentgeno-elektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Electron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

  31. Rhoderick, E.H., Metal-Semiconductor Contacts, Oxford: Clarendon, 1978.

    Google Scholar 

  32. Whitely, S.R. and Gustafson, F.K., Stationary state model for normal metal tunnel junction phenomena, IEEE J. Quantum Electron., 1982, vol. 18, no. 9, pp. 1387–1398.

    Article  Google Scholar 

Download references

Funding

This work was performed using the equipment of the First All-Russian Engineering Center for Molecular Layering Technology, St. Petersburg State Technical University (TU), agreement no. 075-15-2021-028 of the Ministry of Science and Higher Education of Russian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Ezhovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhovsky, Y.K., Mikhailovsky, S.V. Molecular Layering of Oxide Nanostructures on the Surface of Metal Matrices. Russ Microelectron 51, 68–75 (2022). https://doi.org/10.1134/S1063739722020056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722020056

Keywords:

Navigation