Arrays of Carbon Nanotubes in a Field of Continuous Laser Radiation


A numerical analysis of the phase-matching conditions during the incidence of one or two counterpropagating laser beams on an ordered array of single-walled carbon nanotubes (CNTs) is performed. The conditions for the generation of slow surface plasmon waves of the terahertz (THz) and far infrared range propagating along the nanotubes of the irradiated array are determined. It is shown that the plasmon frequency can be controlled by changing the angle of incidence of laser radiation on the structure under study. Thus, it is possible to fulfill the condition of longitudinal resonance, in which each array nanotube is a dipole antenna radiating at the plasmon frequency. In this case, the array forms a system of a large number of in-phase emitters, which allows increasing the efficiency of conversion of laser radiation into THz radiation in comparison with a single nanoantenna.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Lee, Y.S., Principles of Terahertz Science and Technology, New York: Springer, 2009.

    Google Scholar 

  2. 2

    Bratman, V.L., Litvak, A.G., and Suvorov, E.V., Mastering the terahertz domain: sources and applications, Phys. Usp., 2011, vol. 54, no. 8, pp. 837–844.

    Article  Google Scholar 

  3. 3

    Bugay, A.N. and Sazonov, S.V., The generation of terahertz radiation via optical rectification in the self-induced transparency regime, Phys. Lett. A, 2010, vol. 374, no. 8, pp. 1093–1096.

    Article  Google Scholar 

  4. 4

    Fülöp, J.A., Pálfalvi, L., Klingebiel, S., Almási, G., Krausz, F., Karsch, S., and Hebling, J., Generation of sub-mJ terahertz pulses by optical rectification, Opt. Lett., 2012, vol. 37, no. 4, pp. 557–559.

    Article  Google Scholar 

  5. 5

    Nagai, M., Matsubara, E., and Ashida, M., High-efficiency terahertz pulse generation via optical rectification by suppressing stimulated Raman scattering process, Opt. Express, 2012, vol. 20, no. 6, pp. 6509–6514.

    Article  Google Scholar 

  6. 6

    Sharma, S. and Vijay, A., Terahertz generation via laser coupling to anharmonic carbon nanotube array, Phys. Plasmas, 2018, vol. 25, no. 2, p. 023114.

    Article  Google Scholar 

  7. 7

    Slepyan, G.Ya., Maksimenko, S.A., Lakhtakia, A., Yevtushenko, O.M., and Gusakov, A.V., Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation, Phys. Rev. B, 1999, vol. 60, no. 24, p. 17136.

    Article  Google Scholar 

  8. 8

    Sadykov, N.R. and Skorkin, N.A., Quantum approach to the description of amplification of radiation from an array of nanotubes, Tech. Phys., 2013, vol. 58, no. 5, pp. 625–629.

    Article  Google Scholar 

  9. 9

    Batrakov, K.G., Kibis, O.V., Kuzhir, P.P., da Costa, M.R., and Portnoi, M.E., Teraherz processes in carbon nanotubes, J. Nanophoton., 2010, vol. 4, no. 1, p. 041665.

    Article  Google Scholar 

  10. 10

    Batrakov, K.G., Maksimenko, S.A., Kuzhir, P.P., and Thomsen, C., Carbon nanotube as a Cherenkov-type light emitter and free electron laser, Phys. Rev. B, 2009, vol. 79, no. 12, p. 125408.

    Article  Google Scholar 

  11. 11

    Shuba, M.V., Slepyan, G.Ya., Maksimenko, S.A., Thomsen, C., and Lakhtakia, A., Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes, Phys. Rev. B, 2009, vol. 79, no. 15, p. 155403.

    Article  Google Scholar 

  12. 12

    Hanson, G.W., Fundamental transmitting properties of carbon nanotube antennas, IEEE Trans. Antennas Propag., 2005, vol. 53, no. 11, pp. 3426–3435.

    Article  Google Scholar 

  13. 13

    Hao, J. and Hanson, G.W., Electromagnetic scattering from finite-length metallic carbon nanotubes in the lower IR bands, Phys. Rev. B, 2006, vol. 74, no. 3, p. 035119.

    Article  Google Scholar 

  14. 14

    Bulyarskii, S.V., Dudin, A.A., Orlov, A.P., Pavlov, A.A., and Leont’ev, V.L., Forced vibration of a carbon nanotube with emission currents in an electromagnetic field, Tech. Phys., 2017, vol. 62, no. 11, pp. 1627–1630.

    Article  Google Scholar 

  15. 15

    Chepurnov, A.S., Ionidi, V.Y., Kirsanov, M.A., Kitsyuk, E.P., Klenin, A.A., Kubankin, A.S., Oleinik, A.N., Pavlov, A.A., and Shchagin, A.V., Nanotubes based neutron generator for calibration of neutrino and dark matter detectors, J. Phys.: Conf. Ser., 2017, vol. 934, no. 1, p. 012013.

    Google Scholar 

  16. 16

    Atdaev, A., Danilyuk, A.L., Labunov, V.A., Prishchepa, S.L., Pavlov, A.A., Basaev, A.S., and Shaman, Yu.P., Interaction of the electromagnetic radiation with the magnetofunctionalized CNT-nanocomposite in the subteraherz frequency range, Izv. Vyssh. Uchebn. Zaved.,Elektron., 2015, vol. 20, no. 4, pp. 357–364.

    Google Scholar 

  17. 17

    Kadochkin, A.S., Moiseev, S.G., Dadoenkova, Y.S., Svetukhin, V.V., and Zolotovskii, I.O., Surface plasmon polariton amplification in a single-walled carbon nanotube, Opt. Express, 2017, vol. 25, no. 22, pp. 27165–27171.

    Article  Google Scholar 

  18. 18

    Wei, L. and Wang, Y.N., Electromagnetic wave propagation in single-wall carbon nanotubes, Phys. Lett. A, 2004, vol. 333, nos. 3–4, pp. 303–309.

    Article  Google Scholar 

  19. 19

    Moradi, A., Surface plasmon-polariton modes of metallic single-walled carbon nanotubes, Photon. Nanostruct., 2013, vol. 11, no. 1, pp. 85–88.

    Article  Google Scholar 

  20. 20

    Moradi, A., Theory of carbon nanotubes as optical nano waveguides, J. Electromagn. Anal. Appl., 2010, vol. 2, no. 12, pp. 672–676.

    Google Scholar 

  21. 21

    Martin-Moreno, L., Garcia de Abajo, F.J., and Garcia-Vidal, F.J., Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube, Phys. Rev. Lett., 2015, vol. 115, no. 17, p. 173601.

    Article  Google Scholar 

  22. 22

    Attiya, A.M., Lower frequency limit of carbon nanotube antenna, Prog. Electromagn. Res., 2009, vol. 94, pp. 419–433.

    Article  Google Scholar 

  23. 23

    Nakanishi, T. and Ando, T., Optical response of finite-length carbon nanotubes, J. Phys. Soc. Jpn., 2009, vol. 78, no. 11, p. 114708.

    Article  Google Scholar 

  24. 24

    Sasaki, K., Murakami, Sh., and Yamamoto, H., Theory of intraband plasmons in doped carbon nanotubes: rolled surface-plasmons of graphene, Appl. Phys. Lett., 2016, vol. 108, no. 16, p. 163109.

    Article  Google Scholar 

  25. 25

    Miano, G. and Villone, F., An integral formulation for the electrodynamics of metallic carbon nanotubes based on a fluid model, IEEE Trans. Antennas Propag., 2006, vol. 54, no. 10, pp. 2713–2724.

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research (project no. 18-29-19101) and by the Ministry of Science and Higher Education (project no. 0004-2019-0002).

Author information



Corresponding author

Correspondence to S. A. Afanas’ev.

Additional information

Abbreviations: CNT—carbon nanotube; PP—plasmon polaritons; THz—terahertz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, S.A., Zolotovsky, I.O., Kadochkin, A.S. et al. Arrays of Carbon Nanotubes in a Field of Continuous Laser Radiation. Russ Microelectron 49, 16–24 (2020).

Download citation