Skip to main content
Log in

Effect of the Phase Composition and Local Crystal Structure on the Transport Properties of the ZrO2–Y2O3 and ZrO2–Gd2O3 Solid Solutions

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The results of investigating the crystal structure, ionic conductivity, and local structure of the (ZrO2)1 –x(Gd2O3)x and (ZrO2)1 –x(Y2O3)x (x = 0.04, 0.08, 0.10, 0.12, and 0.14) solid solutions are reported. The crystals are grown by directional crystallization of the melt in a cold container. The phase composition of the crystals is investigated by X-ray diffractometry and transmission electron microscopy. The transport characteristics are studied by impedance spectroscopy in the temperature range of 400 to 900°C. The local crystal structure is examined by optical spectroscopy. Eu3+ ions were used as a spectroscopic probe. The study of the local structure of the ZrO2–Y2O3 and ZrO2–Gd2O3 solid solutions revealed the features in the formation of optical centers, which reflect the character of localization of oxygen vacancies in the crystal lattice depending on the stabilizing oxide concentration. It is established that the local crystal environment of Eu3+ ions in the (ZrO2)1 –x(Y2O3)x and (ZrO2)1 –x(Gd2O3)x solid solutions is determined by the stabilizing oxide concentration and is practically independent of the stabilizing oxide type (Y2O3 or Gd2O3). The maximum conductivity at a temperature of 900°C is observed in the crystals with 10 mol % of Gd2O3 and 8 mol % of Y2O3. These compositions correspond to the t'' phase and are close to the interface between the cubic and tetragonal phase regions. It is found that in the ZrO2–Y2O3 system the highly symmetric phase is stabilized at a lower stabilizing oxide concentration than in the ZrO2–Gd2O3 system. The analysis of the data obtained makes it possible to conclude that, in this composition range, the concentration dependence of the ionic conductivity is mainly affected by the phase composition rather than the character of the localization of oxygen vacancies in the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Science and Technology of Zirconia V, Badwal, S.P.S., Bannister, M.J., and Hannink, R.H.J., Eds., Lancaster: Technomic Pub., 1993.

    Google Scholar 

  2. Basu, R.N., Materials for solid oxide fuel cells, in Recent Trends in Fuel Cell Science and Technology, New Delhi, India: Anamaya, 2007, chap. 12, pp. 284–329. https://doi.org/10.1007/978-0-387-68815-2

    Book  Google Scholar 

  3. Yamamoto, O., Arachi, Y., Sakai, H., Takeda, Y., Imanishi, N., Mizutani, Y., Kawai, M., and Nakamura, Y., Zirconia based oxide ion conductors for solid oxide fuel cells, Ionics, 1998, vol. 4, nos. 5–6, pp. 403—408. https://doi.org/10.1007/BF02375884

    Article  Google Scholar 

  4. Kuzminov, Yu.S., Lomonova, E.E., and Osiko, V.V., Tugoplavkie materialy iz kholodnogo tiglya (Refractory Materials from a Cold Crucible), Moscow: Nauka, 2004.

  5. Arachi, Y., Sakai, H., Yamamoto, O., Takeda, Y., and Imanishai, N., Electrical conductivity of the ZrO–Ln2O3 (Ln = lanthanides) system, Solid State Ionics, 1999, vol. 121, nos. 1–4, pp. 133–139. https://doi.org/10.1016/S0167-2738(98)00540-2

    Article  Google Scholar 

  6. Kilner, J.A. and Brook, R.J., A study of oxygen ion conductivity in doped non-stoichiometric oxides, Solid State Ionics, 1982, vol. 6, no. 3, pp. 237–252. https://doi.org/10.1016/0167-2738(82)90045-5

    Article  Google Scholar 

  7. Kilner, J.A. and Waters, C.D., The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides, Solid State Ionics, 1982, vol. 6, no. 3, pp. 253–259. https://doi.org/10.1016/0167-2738(82)90046-7

    Article  Google Scholar 

  8. Goff, J.P., Hayes, W., Hull, S., Hutchings, M.T., and Clausen, K.N., Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures, Phys. Rev. B, 1999, vol. 59, no. 22, pp. 14202–14219. https://doi.org/10.1103/PhysRevB.59.14202

    Article  Google Scholar 

  9. Yugami, H., Koike, A., Ishigame, M., and Suemoto, T., Relationship between local structures and ionic conductivity in ZrO2–Y2O3 studied by site-selective spectroscopy, Phys. Rev. B, 1991, vol. 44, no. 17, pp. 9214–9222. https://doi.org/10.1103/PhysRevB.44.9214

    Article  Google Scholar 

  10. Catlow, C.R.A., Transport in doped fluorite oxides, Solid State Ionics, 1984, vol. 12, pp. 67–73. https://doi.org/10.1016/0167-2738(84)90131-0

    Article  Google Scholar 

  11. Zavodinsky, V.G., The mechanism of ionic conductivity in stabilized cubic zirconia, Phys. Solid State, 2004, vol. 46, no. 3, pp. 453–457. https://doi.org/10.1134/1.1687859

    Article  Google Scholar 

  12. Tokiy, N.V., Perekrestov, B.I., Savina, D.L., and Danilenko, I.A., Concentration and temperature dependences of the oxygen migration energy in yttrium-stabilized zirconia, Phys. Solid State, 2011, vol. 53, pp. 1827–1901. https://doi.org/10.1134/S1063783411090290

    Article  Google Scholar 

  13. Ding, H., Virkar, A.V., and Liu, F., Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia, Solid State Ionics, 2012, vol. 215, pp. 16–23. https://doi.org/10.1016/j.ssi.2012.03.014

    Article  Google Scholar 

  14. Li, X. and Hafskjold, B., Molecular dynamics simulations of yttrium-stabilized zirconia, J. Phys.: Condens. Matter., 1995, vol. 7, pp. 1255—1271. https://doi.org/10.1088/0953-8984/7/7/007

    Article  Google Scholar 

  15. Eichler, A., Tetragonal Y-doped zirconia: structure and ion conductivity, Phys. Rev. B, 2001, vol. 64, no. 17, pp. 174103-1–174103-8. https://doi.org/10.1103/PhysRevB.64.174103

    Article  Google Scholar 

  16. Dexpert-Ghys, J., Faucher, M., and Caro, P., Site selective spectroscopy and structural analysis of yttria-doped zirconias, J. Solid State Chem., 1984, vol. 54, no. 2, pp. 179—192. https://doi.org/10.1016/0022-4596(84)90145-2

    Article  Google Scholar 

  17. Voron’ko, Yu.K., Zufarov, M.A., Sobol’, A.A., Ushakov, S.N., and Tsymbal, L.I., Spectroscopy and structure of Eu3+ centers in partially stabilized zirconia and hafnia, Inorg. Mater., 1997, vol. 33, no. 4, pp. 379–389.

    Google Scholar 

  18. Borik, M.A., Volkova, T.V., Kuritsyna, I.E., Lomonova, E.E., Myzina, V.A., Ryabochkina, P.A., and Taba-chkova, N.Yu., Features of the local structure and transport properties of ZrO2–Y2O3–Eu2O3 solid solutions, J. Alloys Compd., 2019, vol. 770, pp. 320–326. https://doi.org/10.1016/j.jallcom.2018.08.117

    Article  Google Scholar 

  19. Borik, M.A., Lomonova, E.E., Osiko, V.V., Panov, V.A., Porodinkov, O.E., Vishnyakova, M.A., Voron’ko, Yu.K., and Voronov, V.V., Partially stabilized zirconia single crystals: growth from the melt and investigation of the properties, J. Cryst Growth, 2005, vol. 275, nos. 1–2, pp. e2173–e2179. https://doi.org/10.1016/j.jcrysgro.2004.11.244

    Article  Google Scholar 

  20. Andrievskaya, E.R., Fazovye ravnovesiya v sistemakh oksidov gafniya, tsirkoniya, ittriya s oksidami redkozemel’nykh elementov (Phase Equilibria in Systems of Oxides of Hafnium, Zirconium, Yttrium with Oxides of Rare-Earth Elements), Kiev: Naukova Dumka, 2010.

  21. Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., and Yoshimura, M., Oxygen-induced structural change of the tetragonal phase around the tetragonal-cubic phase boundary in ZrO2–YO1.5 solid solutions, Acta Crystallogr., B, 1994, vol. 50, no. 6, pp. 663–672. https://doi.org/10.1107/S0108768194006257

    Article  Google Scholar 

  22. Judd, B.R., Three-particle operators for equivalent electrons, Phys. Rev., 1966, vol. 141, no. 1, pp. 4–14. https://doi.org/10.1103/PhysRev.141.4

    Article  Google Scholar 

  23. Krupke, W.F., Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals, Phys. Rev., 1966, vol. 145, no. 1, pp. 325–337. https://doi.org/10.1103/PhysRev.145.325

    Article  Google Scholar 

  24. Bol’shakova, E.V., Malov, A.V., Ryabochkina, P.A., Ushakov, S.N., and Nishchev, K.N., Intensities of hypersensitive transitions in garnet crystals doped with Er3+ ions, Opt. Spectrosc., 2011, vol. 110, no. 6, pp. 910–916.https://doi.org/10.1134/S0030400X11060038

    Article  Google Scholar 

  25. Borik, M.A., Volkova, T.V., Lomonova, E.E., Myzina, V.A., Ryabochkina, P.A., Tabachkova, N.Yu., and Chabushkin, A.N., Spectroscopy of optical centers of Eu3+ ions in partially stabilized and stabilized zirconium crystals, Opt. Spectrosc., 2017, vol. 122, no. 4, pp. 580–587. https://doi.org/10.1134/S0030400X17040087

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-79-00323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Tabachkova.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarkova, E.A., Borik, M.A., Bublik, V.T. et al. Effect of the Phase Composition and Local Crystal Structure on the Transport Properties of the ZrO2–Y2O3 and ZrO2–Gd2O3 Solid Solutions. Russ Microelectron 48, 523–530 (2019). https://doi.org/10.1134/S1063739719080043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719080043

Keywords:

Navigation