Skip to main content
Log in

Magnetooptical Response of Metallized Nanostructural Arrays with a Complex Relief on the Surface of Silicon Wafers

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Magnetooptical studies of nanostructures, including three-dimensional ones, formed by the deposition of a metal layer on the surface of structured silicon are discussed. A comparison of the results of the magnetooptical studies of various fabricated systems demonstrates their different behavior. A vortex domain structure and multivortex states are observed on the spherical surface of nanoobjects obtained by computer simulation with a common center for different vortex domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Hertel, R., Curvature-induced magnetochirality, SPIN, 2013, vol. 3, no. 3, p. 1340009.

    Article  Google Scholar 

  2. Fernandez-Pacheco, F., Streubel, R., Fruchart, O., Hertel, R., Fischer, P., and Cowburn, R.P., Three-dimensional nanomagnetism, Nat. Commun., 2017, vol. 8, p. 15756.

    Article  Google Scholar 

  3. Vojkovic, S., Carvalho-Santos, V.L., Fonseca, J., and Nunez, A.S., Vortex-antivortex pairs induced by curvature in toroidal nanomagnets, J. Appl. Phys., 2017, vol. 121, no. 11, p. 113906.

    Article  Google Scholar 

  4. Parkin, S.S.P., Hayashi, M., and Thomas, L., Magnetic domain-wall racetrack memory, Science, 2008, vol. 320, pp. 190–194.

    Article  Google Scholar 

  5. Rossler, U.K., Bogdanov, A.N., and Pfleiderer, C., Spontaneous skyrmion ground states in magnetic metals, Nature, 2006, vol. 442, p. 797.

    Article  Google Scholar 

  6. Heinze, S., Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., and Blügel, S., Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys., 2011, vol. 7, p. 718.

    Article  Google Scholar 

  7. Bogdanov, A.N. and Rossler, U.K., Chiral symmetry breacking in magnetic thin films and multilayers, Phys. Rev. Lett., 2001, vol. 87, no. 3, p. 037203.

    Article  Google Scholar 

  8. Zhang, K., Bobes, O., and Hofsass, H., Designing self-organized nanopatterns on Si by ion irradiation and metal co-deposition, Nanotecnology, 2014, vol. 25, p. 085301.

    Article  Google Scholar 

  9. Buchin, E.Yu., Vaganova, E.I., Naumov, V.V., Paporkov, V.A., and Prokaznikov, A.V., Enhancement of the transversal magnetooptical Kerr effect in nanoperforated cobalt films, Tech. Phys. Lett., 2009, vol. 35, no. 13, pp. 589–593.

    Article  Google Scholar 

  10. Abramova, S.V., Zvezdin, N.Yu., Izyumov, M.O., Paporkov, V.A., and Prokaznikov, A.V., Complex magnetooptical response from the expanse structures of the magnetophotonic crystal type, Nano- Mikrosist. Tekh., 2015, no. 9, pp. 7–23.

  11. Zarev, I.S., Zvezdin, N.Yu., Paporkov, V.A., and Prokaznikov, A.V., Analysis of contribution from various order diffraction maxima to complex magneto-optical Kerr effect from three-dimensional structures like magnetophotonic crystals, SPIE Proc., 2016, vol. 10224, p. 1022409.

  12. Bokov, V.A., Fizika magnetikov (Physics of Magnets), St. Petersburg: Nevskii Dialekt, 2002.

    Google Scholar 

  13. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., and Van Vaeyenberge, B., The design and verification of MuMax 3, AIP Adv., 2014, vol. 4, p. 107133.

    Article  Google Scholar 

  14. Lebib, A., Li, S.P., Natali, M., and Chen, Y., Size and thickness dependence of magnetization reversal in co dot arrays, J. Appl. Phys., 2001, vol. 89, no. 7, pp. 3892–3896.

    Article  Google Scholar 

  15. Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O., and Welland, M.E., Single-domain circular nanomagnets, Phys. Rev. Lett., 1999, vol. 83, no. 5, pp. 1042–1045.

    Article  Google Scholar 

  16. Ozerov, M., Romhányi, J., Belesi, M., Berger, H., Ansermet, J.-Ph., van den Brink, J., Wosnitza, J., Zvyagin, S.A., and Rousochatzakis, I., Establishing the fundamental magnetic interactions in the chiral skyrmionic mott insulator Cu2OSeO3 by terahertz electron spin resonance, Phys. Rev. Lett., 2014, vol. 113, p. 157205.

    Article  Google Scholar 

  17. Hertel, R., Gliga, S., Fahnle, M., and Schneider, C.M., Ultrafast nanomagnetic toggle switching of vortex cores, Phys. Rev. Lett., 2007, vol. 98, p. 117201.

    Article  Google Scholar 

  18. Luo, Y.M., Zhou, C., Won, C., and Wu, Y.Z., Effect of Dzyaloshinskii-Moriya interaction on magnetic vortex, AIP Adv., 2014, vol. 4, p. 047136.

    Article  Google Scholar 

  19. Mermin, N.D. and Wagner, H., Absence of ferromagnetism or anti-ferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., 1966, vol. 17, pp. 1133–1136.

    Article  Google Scholar 

  20. Mattis, D. and Swendsen, R., Statistical Mechanics Made Simple, Singapore: World Scientific, 2008.

    Book  MATH  Google Scholar 

  21. Tsvelik, A.M., Kvantovaya teoriya v fizike kondensirovannogo sostoyaniya (Quantum Theory in Condensed State Physics), Moscow: Fizmatlit, 2002.

    Google Scholar 

  22. Kim, S.-K., Lee, K.-S., Kang, B.-W., Lee, K.-J., and Kortright, J.B., Vortex-antivortex assisted magnetization dynamics in a semicontinuous thin-film model system studied by micromagnetic simulations, Appl. Phys. Lett., 2005, vol. 86, p. 052504.

    Article  Google Scholar 

  23. Metlov, K.L., Magnetization patterns in ferromagnetic nanoelements of complex variables, Phys. Rev. Lett., 2010, vol. 105, p. 107201.

    Article  Google Scholar 

  24. Dmitrienko, V.E., Ovchinnikova, E.N., Collins, S.P., Nisbet, G., Beutier, G., Kvashnin, Y.O., Mazurenko, V.V., Lichtenstein, A.I., and Katsnelson, M.I., Measuring the Dzyaloshinskii-Moriya interaction in a weak ferromagnet, Nat. Phys., 2014, vol. 10, pp. 202–206.

    Article  Google Scholar 

  25. Lobanova, I.I., Glushkov, V.V., Sluchanko, N.E., and Demishev, S.V., Macroscopic evidence for Abrikosov-type magnetic vortexes in MnSi A-phase, Sci. Rep., 2016, vol. 6, p. 22101.

    Article  Google Scholar 

  26. Geng, L.D. and Jin, Y.M., Magnetic vortex racetrack memory, J. Magn. Magn. Mater., 2017, vol. 423, pp. 84–89.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out within the framework of the Federal Agency of Science and Education. The authors express their gratitude to I.I. Amirov for his help in making the structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Prokaznikov.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paporkov, V.A., Prokaznikov, A.V. Magnetooptical Response of Metallized Nanostructural Arrays with a Complex Relief on the Surface of Silicon Wafers. Russ Microelectron 48, 43–58 (2019). https://doi.org/10.1134/S1063739719010086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719010086

Navigation