Skip to main content
Log in

Atomic Layer Deposition of Y2O3 Using Tris(butylcyclopentadienyl)yttrium and Water

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

In this work, atomic-layer deposition (ALD) of yttrium oxide (Y2O3) was demonstrated using tris(butylcyclopentadienyl)yttrium (Y(CpBut)3) and H2O . Yttrium precursor showed thermal stability and a high reactivity in surface reactions with H2O. In situ monitoring of the deposition process by quartz crystal microbalance (QCM) showed that the growth of oxide is accompanied by the absorption of water into the bulk of the film, which can lead to chemical vapor deposition (CVD) type processes. Reducing amount of dosed water as well as purge time extension during ALD cycling allow to mitigate the CVD effects. The Y2O3 film growth rate 230°C varied depending on the number of cycles and had maximum value of 1.7 Å/cycle. The films obtained at 230°C had a cubic polycrystalline structure with an average density of 96% of the Y2O3 bulk density. The X-ray photoelectron spectroscopy (XPS) measurements showed a carbon impurity level below the detections limit (~0.2 at %). The O/Y atomic concentration ratio estimated by Rutherford backscattering spectroscopy (RBS) was ~1.58. As deposited Y2O3 films had a refractive index of 1.85 (at 632.8 nm), whereas with protective ALD Al2O3 film, the refractive index was 1.73.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. CRC Handbook of Chemistry and Physics, 89th ed., Lide, D.R., Ed., Boca Raton, FL: CRC, 2008–2009.

  2. Harris, D.C., Durable 3-5 μm transmitting infrared window materials, Infrared Phys. Technol., 1998, vol. 39, no. 4, pp. 185–201.

    Article  Google Scholar 

  3. Swamy, V., Dubrovinskaya, N.A., and Dubrovinsky, L.S., High-temperature powder x-ray diffraction of yttria to melting point, J. Mater. Res., 1999, vol. 14, no. 2, pp. 456–459.

    Article  Google Scholar 

  4. Gusev, E.P., Cartier, E., Buchanan, D.A., Gribelyuk, M., Copel, M., Okorn-Schmidt, H., and D’Emic, C., Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues, Microelectron. Eng., 2001, vol. 59, nos. 1–4, pp. 341–349.

    Article  Google Scholar 

  5. Wilk, G.D., Wallace, R.M., and Anthony, J.M., High-kappa gate dielectrics: current status and materials properties considerations, J. Appl. Phys., 2001, vol. 89, no. 10, pp. 5243–5275.

    Article  Google Scholar 

  6. Tsui, B.Y., Hsu, H.H., and Cheng, C.H., High-performance metal-insulator-metal capacitors with HfTiO/Y2O3 stacked dielectric, IEEE Electron Dev. Lett., 2010, vol. 31, no. 8, pp. 875–877.

    Article  Google Scholar 

  7. Wu, Y.H., Lin, C.C., Hu, Y.C., Wu, M.L., Wu, J.R., and Chen, L.L., High-performance metal-insulator-metal capacitor using stacked TiO2/Y2O3 as insulator, IEEE Electron Dev. Lett., 2011, vol. 32, no. 8, pp. 1107–1109.

    Article  Google Scholar 

  8. Wang, Z., Xu, H., Zhang, Z., Wang, S., Ding, L., Zeng, Q., Yang, L., Pei, T., Liang, X., Gao, M., and Peng, L.-M., Growth and performance of yttrium oxide as an ideal high-kappa gate dielectric for carbon-based electronics, Nano Lett., 2010, vol. 10, no. 6, pp. 2024–2030.

    Article  Google Scholar 

  9. Huignard, A., Aron, A., Aschehoug, P., Viana, B., Théry, J., Laurent, A., and Perrière J., Growth by laser ablation of Y2O3 and Tm : Y2O3 thin films for optical applications, J. Mater. Chem., 2000, vol. 10, no. 2, pp. 549–554.

    Article  Google Scholar 

  10. Niu, D., Ashcraft, R.W., and Parsons, G.N., Water absorption and interface reactivity of yttrium oxide gate dielectrics on silicon, Appl. Phys. Lett., 2002, vol. 80, no. 19, pp. 3575–3577.

    Article  Google Scholar 

  11. Jollet, F., Noguera, C., Gautier, M., Thromat, N., and Duraud, J.P., Influence of oxygen vacancies on the electronic-structure of yttrium-oxide, J. Am. Ceram. Soc., 1991, vol. 74, no. 2, pp. 358–364.

    Article  Google Scholar 

  12. Mui, D., Martinez, J.C., Wiehl, L., Raitieri, R., and Adrian, H., Alpha-axis growth of ferroelectric SrBi2Ta2O9 thin films on silicon, Mater. Lett., 2005, vol. 59, no. 10, pp. 1243–1247.

    Article  Google Scholar 

  13. Lu, F.X., Guo, H.B., Guo, S.B., He, Q., Li, C.M., Tang, W.Z., and Chen, G.C., Magnetron sputtered oxidation resistant and antireflection protective coatings for freestanding diamond film IR windows, Diamond Relat. Mater., 2009, vol. 18, nos. 2–3, pp. 244–248.

    Article  Google Scholar 

  14. Dukel'skii, K.V. and Evstrop’ev, S.K., Forming protective nanosize Y(2)O(3) coatings on crystal phosphors, J. Opt. Technol., 2008, vol. 75, no. 11, pp. 737–740.

    Article  Google Scholar 

  15. Atanassov, G., Thielsch, R., and Popov, D., Optical-properties of TiO2, Y2O3 and CeO2 thin-films deposited by electron-beam evaporation, Thin Solid Films, 1993, vol. 223, no. 2, pp. 288–292.

    Article  Google Scholar 

  16. Matsumoto, M., Yamaguchi, N., and Matsubara, H., Low thermal conductivity and high temperature stability of ZrO2–Y2O3–La2O3 coatings produced by electron beam PVD, Scr. Mater., 2004, vol. 50, no. 6, pp. 867–871.

    Article  Google Scholar 

  17. Bakovets, V.V., Levashova, T.M., Ratushnyak, V.T., and Bakhturova, L.F., Chemical vapor deposition of Y2O3 films using Y(dpm)(3), Inorg. Mater., 2002, vol. 38, no. 4, pp. 371–373.

    Article  Google Scholar 

  18. Pulver, M., Nemetz, W., and Wahl, G., CVD of ZrO2, Al2O3 and Y2O3 from metalorganic compounds in different reactors, Surf. Coat. Technol., 2000, vol. 125, nos. 1–3, pp. 400–406.

    Article  Google Scholar 

  19. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., From V.B. Aleskovskii’s “framework” hypothesis to the method of molecular layering/atomic layer deposition, Chem. Vapor Deposit., 2015, vol. 21, nos. 10–12, pp. 216–240.

    Article  Google Scholar 

  20. George, S.M., Atomic layer deposition: an overview, Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131.

    Article  Google Scholar 

  21. Van, T.T. and Chang, J.P., Radical-enhanced atomic layer deposition of Y2O3 via a beta-diketonate precursor and O radicals, Surf. Sci., 2005, vol. 596, nos. 1–3, pp. 1–11.

    Article  Google Scholar 

  22. Mölsä, H., Niinistö, L., and Utriainen, M., Growth of yttrium oxide thin films from β-diketonate precursor, Adv. Mater. Opt. Electron., 1994, vol. 4, no. 6, pp. 389–400.

    Article  Google Scholar 

  23. Putkonen, M., Sajavaara, T., Johansson, L.S., and Niinistö, L., Low-temperature ALE deposition of Y2O3 thin films from beta-diketonate precursors, Chem. Vapor Deposit., 2001, vol. 7, no. 1, pp. 44–50.

    Article  Google Scholar 

  24. Niinistö, J., Putkonen, M., and Niinistö, L., Processing of Y2O3 thin films by atomic layer deposition from cyclopentadienyl-type compounds and water as precursors, Chem. Mater., 2004, vol. 16, no. 15, pp. 2953–2958.

    Article  Google Scholar 

  25. Majumder, P., Jursichb, G., Kueltzob, A., and Takoudis, C., Atomic layer deposition of Y2O3 films on silicon using tris(ethylcyclopentadienyl) yttrium precursor and water vapor, J. Electrochem. Soc., 2008, vol. 155, no. 8, pp. G152–G158.

    Article  Google Scholar 

  26. Xu, R.S., Selvaraj, S.K., Azimi, N., and Takoudis, C.G., Growth characteristics and properties of yttrium oxide thin films by atomic layer deposition from novel Y(iPrCp)(3) precursor and O-3, At. Layer Deposit. Appl., 2012, vol. 50, no. 13, pp. 107–116.

    Google Scholar 

  27. de Rouffignac, P., Park, J.S., and Gordon, R.G., Atomic layer deposition of Y(2)O(3) thin films from yttrium tris(N,N'-diisopropylacetamidinate) and water, Chem. Mater., 2005, vol. 17, no. 19, pp. 4808–4814.

    Article  Google Scholar 

  28. Mai, L.K., Boysen, N., Subaşı, E., de los Arcos, T., Rogalla, D., Grundmeier, G., Bock, C., Lu, H.-L., and Devi, A., Water assisted atomic layer deposition of yttrium oxide using tris(N,N'-diisopropyl-2dimethylamido-guanidinato) yttrium(III): process development, film characterization and functional properties, RSC Adv., 2018, vol. 8, no. 9, pp. 4987–4994.

    Article  Google Scholar 

  29. Park, I.S., Jung, Y.C., Seong, S., Ahn, J., Kang, J., Nohd, W., and Lansalot-Matrasd, C., Atomic layer deposition of Y2O3 films using heteroleptic liquid (iPrCp)(2)Y(iPr-amd) precursor, J. Mater. Chem. C, 2014, vol. 2, no. 43, pp. 9240–9247.

    Article  Google Scholar 

  30. Lee, J.S., Kim, W.H., Oh, I.K., Kim, M.K., Lee, G., Lee, C.W., Park, J., Lansalot-Matras, C., Noh, W., and Kim, H., Atomic layer deposition of Y2O3 and yttrium-doped HfO2 using a newly synthesized Y(iPrCp)(2)(N-iPr-amd) precursor for a high permittivity gate dielectric, Appl. Surf. Sci., 2014, vol. 297, pp. 16–21.

    Article  Google Scholar 

  31. Seppälä, S., Niinistö, J., Blanquart, T., Kaipio, M., Mizohata, K., Räisänen, J., Lansalot-Matras, C., Noh, W., Ritala, M., and Leskelä, M., Heteroleptic cyclopentadienyl-amidinate precursors for atomic layer deposition (ALD) of Y, Pr, Gd, and Dy oxide thin films, Chem. Mater., 2016, vol. 28, no. 15, pp. 5440–5449.

    Article  Google Scholar 

  32. Kang, J.H., Jung, Y.C., Seong, S., Taehoon, L., Ahn, J., Noh, W., and Park, I.S., Structural, chemical, and electrical properties of Y2O3 thin films grown by atomic layer deposition with an (iPrCp)(2)Y(iPr-amd) precursor, Mater. Sci. Semicond. Proces., 2017, vol. 63, pp. 279–284.

    Article  Google Scholar 

  33. Lim, B.S., Rahtu, A., de Rouffignac, P., and Gordon, R.G., Atomic layer deposition of lanthanum aluminum oxide nano-laminates for electrical applications, Appl. Phys. Lett., 2004, vol. 84, no. 20, pp. 3957–3959.

    Article  Google Scholar 

  34. Elam, J.W., Groner, M.D., and George, S.M., Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, Rev. Sci. Instrum., 2002, vol. 73, no. 8, pp. 2981–2987.

    Article  Google Scholar 

  35. Ott, A.W., Klaus, J.W., Johnson, J.M., and George, S.M., Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry, Thin Solid Films, 1997, vol. 292, nos. 1–2, pp. 135–144.

    Article  Google Scholar 

  36. Elliott, S.D., Improving ALD growth rate via ligand basicity: quantum chemical calculations on lanthanum precursors, Surf. Coat. Technol., 2007, vol. 201, nos. 22–23, pp. 9076–9081.

    Article  Google Scholar 

  37. Nilsen, O., Karlsen, O., Kjekshus, A., and Fjellvag, H., Simulation of growth dynamics in atomic layer deposition. Part II. Polycrystalline films from cubic crystallites, Thin Solid Films, 2007, vol. 515, no. 11, pp. 4538–4549.

    Article  Google Scholar 

  38. Puurunen, R.L. and Vandervorst, W., Island growth as a growth mode in atomic layer deposition: a phenomenological model, J. Appl. Phys., 2004, vol. 96, no. 12, pp. 7686–7695.

    Article  Google Scholar 

  39. Wind, R.W., Fabreguette, F.H., Sechrist, Z.A., and George, S.M., Nucleation period, surface roughness, and oscillations in mass gain per cycle during W atomic layer deposition on Al(2)O(3), J. Appl. Phys., 2009, vol. 105, no. 7, pp. 074309-1–074309-13.

    Article  Google Scholar 

  40. Kuroda, Y., Hamano, H., Mori, T., Yoshikawa, Y., and Nagao, M., Specific adsorption behavior of water on a Y2O3 surface, Langmuir, 2000, vol. 16, no. 17, pp. 6937–6947.

    Article  Google Scholar 

  41. Kurushkin, M. and Kurushkin, D., Acid-base behavior of 100 element oxides: visual and mathematical representations, J. Chem. Educ., 2018, vol. 95, no. 4, pp. 678–681.

    Article  Google Scholar 

  42. Zheng, J.X., Ceder, G., Maxisch, T., Chim, W.K., and Choi, W.K., Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: first-principles study, Phys. Rev., 2006, vol. 73, no. 10, pp. 104101-1–104101-7.

    Article  Google Scholar 

  43. Putilov, L.P., Varaksin, A.N., and Tsidilkovski, V.I., Defect formation and water incorporation in Y2O3, J. Phys. Chem. Solids, 2011, vol. 72, no. 9, pp. 1090–1095.

    Article  Google Scholar 

  44. Norby, T. and Kofstad, P., Direct-current conductivity of Y2O3 as a function of water-vapor pressure, J. Am. Ceram. Soc., 1986, vol. 69, no. 11, pp. 780–783.

    Article  Google Scholar 

  45. HSC Chemistry, Outotec Res., 2002, Vers. 5.1.

  46. Moeller, T. and Kremers, H.E., The basicity characteristics of scandium, yttrium, and the rare earth elements, Chem. Rev., 1945, vol. 37, no. 1, pp. 97–159.

    Article  Google Scholar 

  47. Nolan, M. and Elliott, S.D., Competing mechanisms in atomic layer deposition of Er2O3 versus La2O3 from cyclopentadienyl precursors, Chem. Mater., 2010, vol. 22, no. 1, pp. 117–129.

    Article  Google Scholar 

  48. Päiväsaari, J., Dezelah, C.L., Back, D., El-Kaderi, H.M., Heeg, M.J., Putkonen, M., Niinistöa, L., and Winter, C.H., Synthesis, structure and properties of volatile lanthanide complexes containing amidinate ligands: application for Er2O3 thin film growth by atomic layer deposition, J. Mater. Chem., 2005, vol. 15, no. 39, pp. 4224–4233.

    Article  Google Scholar 

  49. Elam, J.W., Emerging applications for ALD in energy technologies, in Proceedings of the ALD workshop at 8th International Conference on Atomic Layer Deposition, ALD-2008, June 29–July 2, Bruges, Belgium, 2008.

  50. Elam, J.W., Martinson, A.B.F., Pellin, M.J., Joseph, T., and Hupp, J.T., Atomic layer deposition of In2O3 using cyclopentadienyl indium: a new synthetic route to transparent conducting oxide films, Chem. Mater., 2006, vol. 18, no. 15, pp. 3571–3578.

    Article  Google Scholar 

  51. Greene, J.E., Klinger, R.E., Barr, T.L., and Welsh, L.B., Auger and X-ray photoelectron-spectroscopy studies of preferential sputtering in Y2O3-doped ZrO2 films, Chem. Phys. Lett., 1979, vol. 62, no. 1, pp. 46–50.

    Article  Google Scholar 

  52. Nigara, Y., Measurement of optical constants of yttrium oxide, Jpn. J. Appl. Phys., 1968, vol. 7, no. 4, pp. 404–408.

    Article  Google Scholar 

  53. Tropf, W.J. and Thomas, M.E., Yttria (Y2O3), in Handbook of Optical Constants of Solids, Palik, E.D., Ed., College Park: Academic, Univ. Maryland Press, 1991, vol. 2, pp. 1081–1098.

    Google Scholar 

  54. Bezuidenhout, D.F. and Pretorius, R., The optical-properties of evaporated Y2O3 films, Thin Solid Films, 1986, vol. 139, no. 2, pp. 121–132.

    Article  Google Scholar 

  55. Arnon, O. and Chou, T.J., Wide band measurement of the refractive-index of optical thin-films during their deposition, Thin Solid Films, 1982, vol. 91, no. 1, pp. 23–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, A.I., Amashaev, R.R., Ashurbekova, K.N. et al. Atomic Layer Deposition of Y2O3 Using Tris(butylcyclopentadienyl)yttrium and Water. Russ Microelectron 48, 1–12 (2019). https://doi.org/10.1134/S1063739719010025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719010025

Navigation