Skip to main content
Log in

Low Dose Rate Effects in Silicon-Based Devices and Integrated Circuits: A Review

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The total ionizing dose effects in silicon-based semiconductor devices (SDs) and integrated circuits (ICs) under conditions of low dose rate irradiation typical of space applications are surveyed. The mechanism of radiation-induced charge buildup in the dielectric of MOS structures and at the semiconductor/dielectric interface is considered. In addition, the nature of defects in the Si/SiO2 structure responsible for these processes is analyzed. The specific features of annealing the charge trapped in a dielectric during irradiation and also of interface traps (surface states, SSs) are shown. The peculiarities of the degradation of MOS and bipolar devices are considered for low dose rate irradiation conditions typical of space applications. It is shown that under low dose rate irradiation, MOS devices are prone to time-dependent effects which are determined by the kinetics of charge buildup and annealing in the Si/SiO2 structure, whereas bipolar devices may be susceptible to true dose rate effects. The main experimental methods of modeling low dose rate effects during accelerated tests of silicon devices and integrated circuits are surveyed. The necessity of using fundamentally different experimental approaches in modeling the time-dependent effects in MOS devices and the true dose rate effects in bipolar devices and integrated circuits is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Barth, J.L., Applying computer simulation tools to radiation effects problems, in IEEE NSREC, Short Course Notes, Snowmass Village, CO, USA, 1997, pp. I-1–I-83.

    Google Scholar 

  2. Stassinopoulos, E.G. and Raymond, J.P., The space radiation environment for electronics, Proc. IEEE, 1988, vol. 76, no. 11, pp. 1423–1442.

    Article  Google Scholar 

  3. Srour, J.R. and McGarrity, J.M., Radiation effects on microelectronics in space, Proc. IEEE, 1988, vol. 76, no. 11, pp. 1443–1469.

    Article  Google Scholar 

  4. Tapero, K.I., Ulimov, V.N., and Chlenov, A.M., Radiatsionnye effekty v kremnievykh integral’nykh skhemakh kosmicheskogo primeneniya (Radiation Effects in Silicon Integrated Circuits for Space Application), Moscow: BINOM Labor. Znanii, 2012.

    Google Scholar 

  5. Tapero, K.I. and Didenko, S.I., Osnovy radiatsionnoi stoikosti izdelii elektronnoi tekhniki: radiatsionnye effekty v izdeliyakh elektronnoi tekhniki: Ucheb. Posobie (Fundamentals of Radiation Resistance of Electronic Products: Radiation Effects in Electronic Products, The School-Book), Moscow: MISiS, 2013.

  6. Ioniziruyushchie izlucheniya kosmicheskogo prostranstva i ikh vozdeistvie na bortovuyu apparaturu kosmicheskikh apparatov (Ionizing Radiation of Outer Space and Their Impact on the On-Board Equipment of Spacecrafts), Raikunov, G.G., Ed., Moscow: Fizmatlit, 2013.

    Google Scholar 

  7. Schwank, J.R., Total dose effects in MOS devices, in 2002 IEEE NSREC, Short Course Notes, 2002, pp. III-1–III-123.

    Google Scholar 

  8. Helms, C.R. and Poindexter, E.H., The silicon–silicon-dioxide system: its microstructure and imperfections, Rep. Prog. Phys., 1994, no. 57, pp. 791–852.

  9. Lenahan, P.M. and Dressendorfer, P.V., Hole traps and trivalent silicon centers in metal/oxide/silicon devices, J. Appl. Phys., 1984, vol. 55, no. 10, pp. 3495–3499.

    Article  Google Scholar 

  10. Warren, W.L., Shaneyfelt, M.R., Schwank, J.R., Fleetwood, D.M., Winokur, P.S., Devine, R.A.B., Maszara, W.P., and McKitterick, J.B., Paramagnetic defect centers in BESOI and SIMOX buried oxides, IEEE Trans. Nucl. Sci., 1993, vol. 40, no. 6, pp. 1755–1764. doi 10.1109/23.273482

    Article  Google Scholar 

  11. Conley, J.F., Lenahan, P.M., and Roitman, P., Electron spin resonance study of E' trapping centers in SIMOX buried oxides, IEEE Trans. Nucl. Sci., 1991, vol. 38, no. 6, pp. 1247–1252.

    Article  Google Scholar 

  12. Herve, D., Leray, J.L., and Devine, R.A.B., Comparative study of radiation-induced electrical and spin active defects in buried SiO2 layers, J. Appl. Phys., 1992, vol. 72, no. 8, pp. 3634–3640. doi 10.1063/1.352306

    Article  Google Scholar 

  13. Boesch, H.E., Jr. and Taylor, T.L., Time-dependent radiation-induced charge effects in wafer-bonded SOI buried oxides, IEEE Trans. Nucl. Sci., 1992, vol. 39, no. 6, pp. 2103–2113.

    Article  Google Scholar 

  14. Boesch, H.E., Jr., Taylor, T.L., Hite, L.R., and Bailey, W.E., Time-dependent hole and electron trapping effects in SIMOX buried oxides, IEEE Trans. Nucl. Sci., 1990, vol. 37, no. 6, pp. 1982–1989.

    Article  Google Scholar 

  15. Stahlbush, R.E., Campisi, G.J., McKitterick, J.B., Maszara, W.P., Roitman, P., and Brown, G.A., Electron and hole trapping in irradiated SIMOX, ZMR, and BESOI buried oxides, IEEE Trans. Nucl. Sci., 1992, vol. 39, no. 6, pp. 2086–2097. doi 10.1109/23.211407

    Article  Google Scholar 

  16. Winokur, P.S., Boesch, H.E., Jr., McGarrity, J.M., and McLean, F.B., Two-stage process for buildup of radiation-induced interface states, J. Appl. Phys., 1979, vol. 50, no. 5, pp. 3492–3495.

    Article  Google Scholar 

  17. McLean, F.B., A framework for understanding radiation-induced interface states in SiO2 MOS structures, IEEE Trans. Nucl. Sci., 1980, vol. 27, no. 6, pp. 1651–1657.

    Article  Google Scholar 

  18. Shaneyfelt, M.R., Schwank, J.R., Fleetwood, D.M., Winokur, P.S., Hughes, K.L., Hash, G.L., and Connors, M.P., Interface trap buildup rates in wet and dry oxides, IEEE Trans. Nucl. Sci., 1992, vol. 39, no. 6, pp. 2244–2251. doi 10.1109/23.211427

    Article  Google Scholar 

  19. Schwank, J.R., Winokur, P.S., Sexton, F.W., Fleetwood, D.M., Perry, J.H., Dressendorfer, P.V., San-ders, D.T., and Turpin, D.C., Radiation-induced interface-state generation in MOS devices, IEEE Trans. Nucl. Sci., 1986, vol. 33, no. 6, pp. 1177–1184.

  20. Saks, N.S., Dozier, C.M., and Brown, D.B., Time dependence of interface trap formation in MOSFETs following pulsed irradiation, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1168–1177.

    Article  Google Scholar 

  21. Boesch, H.E., Jr., Time-dependent interface trap effects in MOS devices, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1160–1167.

    Article  Google Scholar 

  22. Lenahan, P.M., Brower, K.L., Dressendorfer, P.V., and Johnson, W.C., Radiation-induced trivalent silicon defect buildup at the Si–SiO2 interface in MOS structures, IEEE Trans. Nucl. Sci., 1981 vol. 28, no. 6, pp. 4105–4106.

    Article  Google Scholar 

  23. Lenahan, P.M. and Dressendorfer, P.V., An electron spin resonance study of radiation-induced electrically active paramagnetic centers at the Si/SiO2 interface, J. Appl. Phys., 1983, vol. 54, no. 3, pp. 1457–1460.

    Article  Google Scholar 

  24. Poindexter, E.H., Caplan, P.J., Deal, B.E., and Razouk, R.R., Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers, J. Appl. Phys., 1981, vol. 52, no. 2, pp. 879–884.

    Article  Google Scholar 

  25. Gerardi, G.J., Poindexter, E.H., Caplan, P.J., and Johnson, N.M., Interface traps and Pb centers in oxidized (100) silicon wafers, Appl. Phys. Lett., 1986, vol. 49, no. 6, pp. 348–350.

    Article  Google Scholar 

  26. Pease, R.L., Schrimpf, R.D., and Fleetwood, D.M., ELDRS in bipolar linear circuits: a review, IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, pp. 1894–1908.

    Article  Google Scholar 

  27. Sogoyan, A.V. and Davydov, G.G., Features of post-radiation relaxation protsesses in the SPS IS, in Tr. konf. Radiatsionnaya stoikost’ elektronnykh system (Proceedings of the 8th Conference on Radiation Resistance of Electronic Systems), 2005, pp. 49–50.

  28. Shaneyfelt, M.R., Schwank, J.R., Witczak, J.R., Fleetwood, D.M., Pease, R.L., Winokur, P.S., Riewe, L.C., and Hash, G.L., Thermal-stress effects and enhanced low dose rate sensitivity in linear bipolar ICs, IEEE Trans. Nucl. Sci., 2000, vol. 47, no. 6, pp. 2539–2545. doi 10.1109/23.903805

    Article  Google Scholar 

  29. Boesch, H.E., Jr., McGarrity J. M., and McLean F.B., Temperarure- and field-dependent charge relaxation in SiO2 gate insulators, IEEE Trans. Nucl. Sci., 1978, vol. 25, no. 3, pp. 1012–1016.

    Article  Google Scholar 

  30. Boesch, H.E., Jr., McLean, F.B., McGarrity, J.M., and Winokur, P.S., Enhanced flatband voltage recovery in hardened thin MOS capacitors, IEEE Trans. Nucl. Sci., 1978, vol. 25, no. 6, pp. 1239–1245.

    Article  Google Scholar 

  31. Fleetwood, D.M., Winokur, P.S., and Schwank, J.R., Using laboratory X-ray and Co-60 irradiations to predict CMOS device response in strategic and space environments, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1497–1505.

    Article  Google Scholar 

  32. Schwank, J.R., Winokur, P.S., McWhorter, P.J., Sexton, F.W., Dressendorfer, P.V., and Turpin, D.C., Physical mechanisms contributing to device “Rebound,” IEEE Trans. Nucl. Sci., 1984, vol. 31, no. 6, pp. 1434–1438.

    Article  Google Scholar 

  33. Derbenwick, G.F. and Sander, H.H., CMOS hardness for low-dose-rate environments, IEEE Trans. Nucl. Sci., 1977, vol. 24, no. 6, pp. 2244–2247.

    Article  Google Scholar 

  34. Lelis, A.J., Boesch, H.E., Jr., Oldham, T.R., and McLean, F.B., Reversibility of trapped hole charge, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1186–1191.

    Article  Google Scholar 

  35. Fleetwood, D.M., Shaneyfelt, M.R., Reiwe, L.C., Winokur, P.S., and Reber, R.A., The role of border traps in MOS high-temperature postirradiation annealing response, IEEE Trans. Nucl. Sci., 1993, vol. 40, no. 6, pp. 1323–1334. doi 10.1109/23.273535

    Article  Google Scholar 

  36. McWhorter, P.J., Miller, S.L., and Miller, W.M., Modeling the anneal of radiation-induced trapped holes in a varying thermal environment, IEEE Trans. Nucl. Sci., 1990, vol. 37, no. 6, pp. 1682–1689.

    Article  Google Scholar 

  37. Oldham, T.R., Lelis, A.J., and McLean, F.B., Spatial dependence of trapped holes determined from tunneling analysis and measured anneaking, IEEE Trans. Nucl. Sci., 1986, vol. 33, no. 6, pp. 1203–1209.

    Article  Google Scholar 

  38. McWhorter, P.J., Miller, S.L., and Dellin, T.A., Modeling the memory retention characteristics of SNOS transistors in a varying thermal environment, J. Appl. Phys., 1990, vol. 68, no. 4, pp. 1902–1908.

    Article  Google Scholar 

  39. Lelis, A.J., Oldham, T.R., and DeLancey, W.M., Response of interface traps during high-temperature anneals, IEEE Trans. Nucl. Sci., 1991, vol. 38, no. 6, pp. 1590–1597.

    Article  Google Scholar 

  40. Fleetwood, D.M., Thome, F.V., Tsao, S.S., Dressendorfer, P.V., Dandini, V.J., and Schwank, J.R., High-temperature silicon-on-insulator electronics for space nuclear power systems: requirements and feasibility, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 5, pp. 1099–1112. doi 10.1109/23.7506

    Article  Google Scholar 

  41. Winokur, P.S., Sexton, F.W., Schwank, J.R., Fleetwood, D.M., Dressendorfer, P.V., Wrobel, T.F., and Turpin, D.C., Total-dose radiation and annealing studies: implications for hardness assurance testing, IEEE Trans. Nucl. Sci., 1986, vol. 33, no. 6, pp. 1343–1351. doi 10.1109/TNS.1986.4334603

    Article  Google Scholar 

  42. Jonston, A.H., Super recovery of total dose damage in MOS devices, IEEE Trans. Nucl. Sci., 1984, vol. 31, no. 6, pp. 1427–1433.

    Article  Google Scholar 

  43. Schrimpf, R.D., Physics and hardness assurance for bipolar technologies, in IEEE NSREC Short Course, 2001, pp. IV-1–IV-67.

  44. Enlow, E.W., Pease, R.L., Combs, W.E., Schrimpf, R.D., and Nowlin, R.N., Response of advanced bipolar processes to ionizing radiation, IEEE Trans. Nucl. Sci., 1991, vol. 38, no. 6, pp. 1342–1351. doi 10.1109/23.124115

    Article  Google Scholar 

  45. McClure, S., Pease, R.L., Will, W., and Perry, G., Dependence of total dose response of bipolar linear micro-circuits on applied dose rate, IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 2544–2549.

    Article  Google Scholar 

  46. Johnston, A.H., Swift, G.M., and Rax, B.G., Total dose effects in conventional bipolar transistors and linear integrated circuits, IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 2427–2436.

    Article  Google Scholar 

  47. Beaucour, J.T., Carriere, T., Gach, A., and Laxague, D., Total dose effects on negative voltage regulator, IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 2420–2426. doi 10.1109/23.340597

    Article  Google Scholar 

  48. Chen, X.Jie, Barnaby, H.J., Adell, P., Pease, R.L., Vermeire, B., and Holbert, K.E., Modeling the dose rate response and the effects of hydrogen in bipolar technologies, IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, pp. 3196–3202. doi 10.1109/TNS.2009.2034154

    Article  Google Scholar 

  49. Tapero, K.I., Petrov, A.S., Ulimov, V.N., Chubunov, P.A., and Anashin, V.S., Comparison of irradiation at low dose rate and irradiation at elevated temperature to reveal ELDRS in bipolar linear circuits, in Proceedings of the 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Moscow, 2015, pp. 1–5. doi 10.1109/RADECS.2015.7365593

  50. Johnston, A.H., Lee, C.I., and Rax, B.G., Enhanced damage in bipolar devices at low dose rates: effects at very low dose rates, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 3049–3059.

    Article  Google Scholar 

  51. Witczak, S.C., Schrimpf, R.D., Galloway, K.F., Fleetwood, D.M., Pease, R.L., Puhl, J.M., Schmidt, D.M., Combs, W.E., and Suehle, J.S., Accelerated tests for simulating low dose rate gain degradation of lateral and substrate pnp bipolar junction transistors, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 3151–3160. doi 10.1109/23.556919

    Article  Google Scholar 

  52. Romanenko, A.A., Effect of low-intensity ionizing radiation on bipolar electronic products, Vopr. At. Nauki Tekh., Ser.: Fiz. Rad. Vozdeistv. Radioelektron. Appar., 2002, no. 4, pp. 121–132.

  53. Fleetwood, D.M., Kosier, S.L., Nowlin, R.N., Schrimpf, R.D., Reber, R.A., DeLaus, M., Winokur, P.S., Wei, A., Combs, W.E., and Pease, R.L., Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates, IEEE Trans. Nucl. Sci., 1994, vol. 41, no. 6, pp. 1871–1883. doi 10.1109/23.340519

    Article  Google Scholar 

  54. Fleetwood, D.M., Reiwe, L.C., Schwank, J.R., Witczak, S.C., and Schrimpf, R.D., Radiation effects at low electric fields in thermal, SIMOX, and bipolar-base oxides, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 2537–2546. doi 10.1109/23.556834

    Article  Google Scholar 

  55. Witczak, S.C., Lacoe, R.C., Mayer, D.C., Fleetwood, D.M., Schrimpf, R.D., and Galloway, K.F., Space charge limited degradation of bipolar oxides at low electric fields, IEEE Trans. Nucl. Sci., 1998, vol. 45, no. 6, pp. 2339–2351. doi 10.1109/23.736453

    Article  Google Scholar 

  56. Graves, R.J., Cirba, C.R., Schrimpf, R.D., Milanowski, R.J., Michez, A., Fleetwood, D.M., Witczak, S.C., and Saigne, F., Modeling low-dose-rate effects in irradiated bipolar-base oxides, IEEE Trans. Nucl. Sci., 1998, vol. 45, no. 6, pp. 2352–2360. doi 10.1109/23.736454

    Article  Google Scholar 

  57. Rashkeev, S.N., Cirba, C.R., Fleetwood, D.M., Schrimpf, R.D., Witczak, S.C., Michez, A., and Pantelides, S.T., Physical model for enhanced interface-trap formation at low dose rates, IEEE Trans. Nucl. Sci., 2002, vol. 49, no. 6, pp. 2650–2655. doi 10.1109/TNS.2002.805387

    Article  Google Scholar 

  58. Hjalmarson, H.P., Pease, R.L., Witczak, S.C., Shaneyfelt, M.R., Schwank, J.R., Edwards, A.H., Hembree, C.E., and Mattsson, T.R., Mechanisms for radiation dose-rate sensitivity of bipolar transistors, IEEE Trans. Nucl. Sci., 2003, vol. 50, no. 6, pp. 1901–1909. doi 10.1109/TNS.2003.821803

    Article  Google Scholar 

  59. Tsetseris, L., Schrimpf, R.D., Fleetwood, D.M., Pease, R.L., and Pantelides, S.T., Common origin for enhanced low-dose-rate sensitivity and bias temperature instability under negative bias, IEEE Trans. Nucl. Sci., 2005, vol. 52, no. 6, pp. 2265–2271. doi 10.1109/TNS.2005.860670

    Article  Google Scholar 

  60. Boch, J., Saigne, F., Touboul, A.D., Ducret, S., Carlotti, J.-F., Bernard, M., Schrimpf, R.D., Wrobel, F., and Sarrabayrouse, G., Dose rate effects in bipolar oxides: competition between trap filling and recombination, Appl. Phys. Lett., 2006, vol. 88, p. 232113. doi 10.1063/1.2210293

    Article  Google Scholar 

  61. Boch, J., Saigne, F., Schrimpf, R.D., Vaill, J.-R., Dusseau, L., and Lorfvre, E., Physical model for low-dose-rate effect in bipolar devices, IEEE Trans. Nucl. Sci., 2006, vol. 53, no. 6, pp. 3655–3660. doi 10.1109/ TNS.2006.886008

    Article  Google Scholar 

  62. Fleetwood, D.M., Schrimpf, R.D., Pantelides, S.T., Pease, R.L., and Dunham, G.W., Electron capture, hydrogen release and enhanced gain degradation in bipolar linear devices, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 6, pp. 2986–2991. doi 10.1109/TNS.2008.2006485

    Article  Google Scholar 

  63. Hjalmarson, H.P., Pease, R.L., and Devine, R., Calculations of radiation dose-rate sensitivity of bipolar transistors, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 6, pp. 3009–3015.

    Article  Google Scholar 

  64. Belyakov, V.S., Pershenkov, V.S., Shalnov, A.V., and Shvetzov-Shilovsky, I.N., Use of MOS structures for the investigation of low-dose-rate effects in bipolar transistors, IEEE Trans. Nucl. Sci., 1995, vol. 42, no. 6, pp. 1660–1666.

    Article  Google Scholar 

  65. Freitag, R.K. and Brown, D.B., Study of low-dose-rate effects in commercial linear bipolar ICs, IEEE Trans. Nucl. Sci., 1998, vol. 45, no. 6, pp. 2649–2658.

    Article  Google Scholar 

  66. Petrov, A.S., Tapero, K.I., and Ulimov, V.N., Influence of temperature and dose rate on the degradation of BiCMOS operational amplifiers during total ionizing dose testing, Microelectron. Reliab., 2014, vol. 54, pp. 1745–1748.

    Article  Google Scholar 

  67. Tapero, K.I., Petrov, A.S., Chubunov, P.A., Ulimov, V.N., and Anashin, V.S., Dose effects in CMOS operational amplifiers with bipolar and CMOS input stage at different dose rates and temperatures, in Proceedings of the 15th European Conference on Radiation and its Effects on Components and Systems RADECS, Moscow, 2015, pp. 1–4. doi 10.1109/RADECS.2015.7365602

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Tapero.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapero, K.I. Low Dose Rate Effects in Silicon-Based Devices and Integrated Circuits: A Review. Russ Microelectron 47, 539–552 (2018). https://doi.org/10.1134/S1063739718080127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718080127

Keywords:

Navigation