Skip to main content
Log in

Modeling the Energy Structure of a GaN pin Junction

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The second-order differential equation, which includes the density distribution function of a mobile charge in a compensated layer of the GaN diode pin junction is derived. The equation is solved numerically using the MathCad software. The electric field at the interface between the doped and compensated layers is calculated under the assumption of the concentration of electrons diffused into the compensated layer being much higher than the concentration of the immobile compensated impurity ions. Electrons from the heavily doped layer diffuse into the compensated layer and leave positively charged donor impurity ions there. The electric field ε induced between the layers of mobile electrons and ions compensates the diffusion flow by the drift flow. The charged layers of mobile carriers screen the external electric field. Based on the solution of the differential equation, diagrams of the electric field and potential distribution in the GaN pin junction’s space charge region (SCR) are built taking into account the effect of free carriers. It is shown that in the nonexponential portion of the I–V characteristic, the drift field is induced in the compensated layer, which limits the growth of the forward current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Meneghini, M., Tazzoli, A., Mura, G., Meneghesso, G., and Zanoni, E., High brightness GaN LEDs degradation during dc and pulsed stress, in Proceedings of the 17th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Wuppertal, Germany, 2006, Microelectron. Reliab., 2006, vol. 46, nos. 9–11, pp. 1720–1724.

    Article  Google Scholar 

  2. Rizhkov, M.V., About degradation and refusals of white light-emitting diodes, Svetotekhnika, 2010, no. 4, pp. 25–28.

  3. Nikiforov, S., The story about an “eternal” youth of light-emitting diodes, Poluprovodn. Svetotekh., 2010, no. 4, pp. 32–36.

  4. Shuichiro, Y., Zhao, Yu., Pan, Ch.-Ch., Chung, R.B., Fujito, K., Sonoda, J., DenBaars, S.P., and Nakamura, Sh., High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates, Appl. Phys. Express, 2010, vol. 3, no. 12, p. 122102. doi 10.1143/APEX.3.122102

    Article  Google Scholar 

  5. Lee, Ya-Ju., Chiu, Ch.-H., Ke, Ch. Ch., Lin, P. Ch., Lu, T.-Ch., Kuo, H.-Ch., and Wang, Sh.-Ch., Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate, IEEE J. Sel. Top. Quantum Electron., 2009, vol. 15, no. 4, pp. 1137–1143. doi 10.1109/JSTQE.2009.2014967

    Article  Google Scholar 

  6. Bochkareva, N.I., Gorbunov, R.I., Zubrilov, A.S., Lelikov, Y.S., Rebane, Y.T., Shreter, Y.G., Voronenkov, V.V., Tsyuk, A.I., and Latyshev, F.E., Mechanism of the GaN LED efficiency falloff with increasing current, Semiconductors, 2010, vol. 44, no. 6, pp. 794–800. doi 10.1134/S1063782610060175

    Article  Google Scholar 

  7. Kudryashov, V.E., Mamakin, S.S., Turkin, A.N., Yunovich, A.E., Kovalev, A.N., and Manyakhin, F.I., Luminescence spectra and efficiency of GaN-based quantum-well heterostructure light emitting diodes: current and voltage dependence, Semiconductors, 2001, vol. 35, no. 7, pp. 827–834. doi 10.1134/1.1385720

    Article  Google Scholar 

  8. Mishori, B., Muñoz, M., Mourokh, L., Pollak, F.H., DeBray, J.P., Ting, S., and Ferguson, I., Surface photovoltage spectroscopy of InGaN/GaN/AlGaN multiple quantum well light emitting diodes, Mater. Res. Soc. Symp. Proc., 2001, vol. 680, pp. E4.2,1–E4.2,6.

  9. Shukailo, P.V., Obolensky, S.V., Basargina, N.V., Vorozhtsova, I.V., Dubrovskikh, S.M., and Tkachev, O.V., Analysis of GaN LED electroluminescence spectra after neutron irradiation, Vestn. Nizhegor. Univ. Lobachevskogo, Radiofiz., 2012, no. 6-1, pp. 51–55.

  10. Pinnington, T., Koleske, D.D., Zahler, J.M., Ladous, C., Park, Y.-B., Crawford, M.H., Banas, M., Thaler, G., Russell, M.J., Olson, S.M., and Atwater, H.A., InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition, J. Cryst. Growth, 2008, vol. 310, no. 10, pp. 2514–2519. doi 10.1016/j.jcrysgro.2008.01.022

    Article  Google Scholar 

  11. Lin, G.-B., Kim, D.-Y., Shan, Q., Cho, J., Schubert, E.F., Shim, H.w., Sone, Ch.S., and Kim, J.K., Effect of quantum barrier thickness in the multiple-quantum-well active region of GaInN/GaN light-emitting diodes, IEEE Photon. J., 2013, vol. 5, no. 4. doi 10.1109/JPHOT.2013.2276758

  12. McBride, P.M., Yan, Q., and van de Walle, C.G., Effects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes, Appl. Phys. Lett., 2014, vol. 105, no. 8, p. 083507. doi 10.1063/1.4894464

    Article  Google Scholar 

  13. Shah, J.M., Li, Y.-L., Gessmann, Th., and Schubert, E.F., Experimental analysis and theoretical model for anomalously high ideality factors (n \( \gg \) 2.0) in AlGaN/GaN p–n junction diodes, J. Appl. Phys., 2003, vol. 94, no. 4, pp. 2627–2630. doi 10.1063/1.1593218

    Article  Google Scholar 

  14. Adirovich, E.I., Karageorgii-Alkalaev, P.M., and Leiderman, A.Yu., Toki dvoinoi inzhektsii v poluprovodnikakh (Currents of Double Injection in Semiconductors), Moscow: Sovetskoe Radio, 1978.

    Google Scholar 

  15. Zaytsev, S.N. and Ryzhikov, I.V., The influence of deep recombination centers and trapping on the diffusion currents in the double injection of PIN-asymmetric structures, neutron-irradiated, Vestn. Mosk. Univ. Priborostr. Inform., Ser. Priborostr. Inform. Tekhnol., 2013, no. 44, pp. 115–126.

  16. Rabinovich, O.I. and Sushkov, V.P., Quantum efficiency simulation of InGaN/Si LED, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2012, no. 3, pp. 50–53. doi 10.17073/1609-3577-2012-3-50-53

  17. Panchenko, P.V., Malakhanov, A.A., Rybalka, S.B., and Rad’kov, A.V., Modeling of the current-voltage characteristics of a Schottky diode based on Ti/H4-SiC silicon carbide, Zh. Radioelektron., 2016, no. 8, pp. 3.1–3.10.

  18. Manyakhin, F.I., The role of the compensated layer in the formation of the volt-ampere characteristic of wide-band semiconductors light emitting diodes, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2009, no. 3, pp. 51–56.

  19. Manyakhin, F.I. and Kalinina, E.V., Charge, electric field and potential distribution in SiC based high-voltage barrier structures, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2003, no. 2, pp. 50–56.

Download references

ACKNOWLEDGMENTS

This study was supported by the Competitiveness Enhancement Program 5–100 for the National University of Science and Technology MISiS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. I. Manyakhin or L. O. Mokretsova.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manyakhin, F.I., Mokretsova, L.O. Modeling the Energy Structure of a GaN pin Junction. Russ Microelectron 47, 619–623 (2018). https://doi.org/10.1134/S1063739718080073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718080073

Keywords:

Navigation