Skip to main content
Log in

Optimization Problems of Nanosized Semiconductor Heterostructures

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A new approach is presented that allows solving optimization problems of nanosized semiconductor heterostructures. We have formulated and solved the problem of determining the optimal doping of a barrier layer consisting of a number of sublayers, which provides a preset concentration of electrons in the conduction channel of semiconductor heterostructures. To solve the problem, effective optimization algorithms based on gradient methods are developed. As an example, an Al0.25GaN/GaN heterostructure with a total barrier layer thickness of 30 nm is considered. The results obtained in the numerical experiment are consistent with the modern trend towards the transition from a homogeneous doping profile to a planar δ-doping in field-effect transistor manufacturing technologies. The developed technique of mathematical simulation and optimization can be used in field-effect transistor manufacturing technologies. The approaches presented in the work create the conditions for the automated design of such structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Lukashin, V.M., Pashkovskij, A.B., Zhuravlev, K.S., Toropov, A.I., Lapin, V.G., Golant, E.I., and Kapralova, A.A., Prospects for the development of high-power field-effect transistors based on heterostructures with donor-acceptor doping, Semiconductors, 2014, vol. 48, no. 5, pp. 666–674.

    Article  Google Scholar 

  2. Abgaryan, K.K., Mutigullin, I.V., and Reviznikov, D.L., Computational model of 2DEG mobility in the AlGaN/GaN heterostructures, Phys. Status Solidi C, 2015, vol. 12, nos. 4–5, pp. 460–465. doi 10.1002/ pssc.201400200

    Article  Google Scholar 

  3. Abgaryan, K.K. and Reviznikov, D.L., Numerical simulation of the distribution of charge carriers in nanosized semiconductor heterostructures with account for polarization effects, Comput. Math. Math. Phys., 2016, vol. 56, no. 1, pp. 161–172. doi 10.7868/S004446691601004X

    Article  MathSciNet  MATH  Google Scholar 

  4. Kohn, W. and Sham L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, vol. 140, pp. 1133–1138. doi 10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  5. Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, vol. 54, no. 16, pp. 11169–11186. doi 10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  6. Vasileska, D., Goodnick, S.M., and Goodnick, S., Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, Boca Raton, FL: CRC, 2010.

    Book  MATH  Google Scholar 

  7. Protasov, D.Y., Malin, T.V., Tikhonov, A.V., Tsatsulnikov, A.F., and Zhuravlev, K.S., Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas, Semiconductors, 2013, vol. 47, no. 1, pp. 33–44.

  8. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., and Eastman, L.F., Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures, J. Phys.: Condens. Matter, 2002, vol. 14, pp. 3399–3434.

    Google Scholar 

  9. Abgaryan, K.K., Mutigullin, I.V., and Reviznikov, D.L., Theoretical investigation of 2DEG concentration and mobility in the AlGaN/GaN heterostructures with various Al concentrations, Phys. Status Solidi C, 2015, vol. 12, no. 12, pp. 1376–1382. doi 10.1002/pssc.201510159

    Article  Google Scholar 

  10. Trellakis, A., Galick, A.T., Pacelli, A., and Ravaioli, U., Iteration scheme for solution of the two-dimensional Schrödinger-Poisson equations in quantum structures, J. Appl. Phys., 1997, vol. 81, no. 12, pp. 7880–7884.

    Article  Google Scholar 

  11. Evtushenko, Yu.G., Optimizatsiya i bystroe differentsirovanie (Optimization and Fast Differentiation), Moscow: Vychisl. Tsentr Dorodnicyna RAN, 2013.

    Google Scholar 

  12. Borisenko, V.E., Vorob’eva, A.I., and Utkina, E.A., Nanoelektronika (Nanoelectronics), Moscow: Binom. Laboratoriya Znanii, 2009.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project no. 16-08-01178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Abgaryan.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abgaryan, K.K. Optimization Problems of Nanosized Semiconductor Heterostructures. Russ Microelectron 47, 583–588 (2018). https://doi.org/10.1134/S1063739718080024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718080024

Keywords:

Navigation