Russian Microelectronics

, Volume 47, Issue 2, pp 142–156 | Cite as

The Element of Matching on an STG DICE Cell for an Upset Tolerant Content Addressable Memory

  • Yu. V. Katunin
  • V. Ya. Stenin


The TCAD simulation of charge collection from tracks of single nuclear particles directed along the normal to the logic matching element on STG DICE cells demonstrates their unique upset tolerance. The tracks used for simulation are directed normal to the microchip surface with the linear energy transfer (LET) ranging from 10 to 60 MeV cm2/mg. We investigate a 65-nm bulk CMOS logic matching element for use in content addressable memory and translation lookaside buffers. It is a matching element on an STG DICE cell with an exclusive OR logic element on two tristate inverters. The linear energy transfers in the range of 30–60 MeV cm2/mg on the tracks normal to the chip surface do not cause single event upsets in the STG DICE cell for LET = 60 MeV cm2/mg. In the output combinational logic of the matching element, short (up to 0.6 ns) noise voltage pulses for a LET ranging from 20 to 60 MeV cm2/mg can be found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katunin, Yu.V., Stenin, V.Ya., and Stepanov, P.V., Modeling the characteristics of trigger elements of twophase CMOS logic, taking into account the charge sharing effect under exposure to single nuclear particles, Russ. Microelectron., 2014, vol. 43, no. 2, pp. 112–124.CrossRefGoogle Scholar
  2. 2.
    Stenin, V.Ya., Simulation of the characteristics of the DICE 28-nm CMOS cells in unsteady states caused by the effect of single nuclear particles, Russ. Microelectron., 2015, vol. 44, no. 5, pp. 324–334.CrossRefGoogle Scholar
  3. 3.
    Calin, T., Nicolaidis, M., and Velazco, R., Upset hardened memory design for submicron CMOS technology, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 2874–2878.CrossRefGoogle Scholar
  4. 4.
    Stenin, V.Ya. and Stepanov, P.V., Basic memory elements using DICE cells for fault-tolerant 28 nm CMOS RAM, Russ. Microelectron., 2015, vol. 44, no. 6, pp. 368–379.CrossRefGoogle Scholar
  5. 5.
    Stenin, V.Ya., Katunin, Yu.V., and Stepanov, P.V., Upset-resilient RAM on STG DICE memory elements with the spaced transistors into two groups, Russ. Microelectron., 2016, vol. 45, no. 6, pp. 419–432.CrossRefGoogle Scholar
  6. 6.
    Katunin, Yu.V. and Stenin, V.Ya., Simulation of Single Event Effects in STG DICE Memory Cells, Russ. Microelectron., 2018, vol. 47, no. 1, pp. 20–33.CrossRefGoogle Scholar
  7. 7.
    Narasimham, B., Bhuva, B.L., Schrimpf, R.D., Massengill, L.W., Gadlage, M.J., Holman, W.T., Witulski, A.F., Robinson, W.H., Black, J.D., Benedetto, J.M., and Eaton, P.H., Effects of guard bands and well contacts in mitigating long SETs in advanced CMOS processes, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 3, pp. 1708–1713.CrossRefGoogle Scholar
  8. 8.
    Warren, K.M., Stenberg, A.L., Black, J.D., Weller, R.A., Reed, R.A., Mendenhall, M.H., Schrimpf, R.D., and Massengill, L.W., Heavy ion testing and single-event upset rate prediction considerations for a DICE flip-flop, IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, pp. 3130–3137.CrossRefGoogle Scholar
  9. 9.
    Loveless, T.D., Jagannathan, S., Reece, T., Chetia, J., Bhuva, B.L., McCurdy, M.W., Massengill, L.W., Wen, S.-J., Wong, R., and Rennie, D., Neutron-and proton-induced single event upsets for D-and DICEflip/ flop designs at a 40 nm technology node, IEEE Trans. Nucl. Sci., 2011, vol. 58, no. 3, pp. 1008–1014.CrossRefGoogle Scholar
  10. 10.
    Lilja, K., Bounasser, M., Wen, S., Wong, R., Holst, J., Gaspard, N., Jagannathan, S., Loveless, D., and Bhuva, B., Single event performance and layout optimization of flip-flops in a 28-nm bulk technology, IEEE Trans. Nucl. Sci., 2013, vol. 60, no. 4, pp. 2782–2788.CrossRefGoogle Scholar
  11. 11.
    Pagiamtzis, K., Azizi, N., and Najm, F.N., A soft-error tolerant content-addressable memory (CAM) using an error-correcting-match scheme, in Proceedings of the IEEE Custom International Circuits Conference, San Hose, CA, Sept. 10–13, 2006, pp. 301–304.Google Scholar
  12. 12.
    Abbas, S.M., Lee, S., Baeg, S., and Park, S., An efficient multiple cell upsets tolerant content-addressable memory, IEEE Trans. Comput., 2014, vol. 63, no. 8, pp. 2094–2098.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Azizi, N. and Najm, F., A family of cells to reduce the soft-error-rate in ternary-CAM, in Proceedings of the 43rd Design Automation Conference, San Francisco, CA, July 24–28, 2006, pp. 779–784.Google Scholar
  14. 14.
    Eftaxiopoulos, N., Axelos, N., and Pekmestzi, K., Low leakage radiation tolerant CAM/TCAM cell, in Proceedings of IEEE International On-Line Testing Symposium (IOLTS), Halkidiki, Greece, July 6–8, 2015, pp. 206–211.Google Scholar
  15. 15.
    Stenin, V.Ya. and Antonyuk, A.A., Design of the 65-nm CMOS comparison element for a content-addressable memory and simulation of single-event transients, in Proceedings of the 24th Telecommunications Forum, Belgrade, 2016, pp. 413–416.Google Scholar
  16. 16.
    Stenin, V.Ya. and Antonyuk, A.A., Design of the CMOS comparison elements on STG DICE for a content-addressable memory and simulation of singleevent transients, Telfor J., 2017, vol. 9, no. 1, pp. 61–66.CrossRefGoogle Scholar
  17. 17.
    Stenin, V.Ya., Antonyuk, A.A., Katunin, Yu.V., and Stepanov, P.V., Design of logical elements for the 65-nm CMOS translation lookaside buffer with compensation of single events effects, in Proceedings of the International Siberian Conference on Control and Communications, 2017, pp. 1–6.Google Scholar
  18. 18.
    Wang, T., Xiao, L., and Huang, Q., Simulation study of single event effect for different N-well and deep-N-well doping in 65 nm triple-well CMOS devices, in Proceedings of International Conference on Optoelectronics and Microelectronics, 2012, pp. 505–509.Google Scholar
  19. 19.
    Giot, D., Roche, P., Gasiot, G., Autran, J.-L., and Harboe-Sørensen, R., Heavy ion testing and 3D simulations of multiple cell upset in 65 nm standard SRAMs, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 4, pp. 2048–2054.CrossRefGoogle Scholar
  20. 20.
    Uznanski, S., Gasiot, G., Roche, P., Tavernier, C., and Autran, J.-L., Single event upset and multiple cell upset modeling in commercial bulk 65-nm CMOS SRAMs and flip-flops, IEEE Trans. Nucl. Sci., 2010, vol. 57, no. 4, pp. 1876–1883.CrossRefGoogle Scholar
  21. 21.
    Boruzdina, A.B., Sogoyan, A.V., Smolin, A.A., Ulanova, A.V., Gorbunov, M.S., Chumakov, A.I., and Boychenko, D.V., Temperature dependence of MCU sensitivity in 65 nm CMOS SRAM, IEEE Trans. Nucl. Sci., 2015, vol. 62, no. 6, pp. 2860–2866.CrossRefGoogle Scholar
  22. 22.
    Garg, R. and Khatri, S.P., Analysis and Design of Resilient VLSI Circuits: Mitigating Soft Errors and Process Variations, New York: Springer, 2010, pp. 194–205.CrossRefGoogle Scholar
  23. 23.
    Soft Errors in Modern Electronic Systems, Nicolaidis, M., Ed., New York: Springer, 2011, pp. 35–37.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Scientific Research Institute of System AnalysisRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations