Russian Microelectronics

, Volume 46, Issue 6, pp 414–423 | Cite as

Electronic Structure of Molecular Switches on Splitters Based on trans-Polyacetylene

  • A. A. Gorbatsevich
  • M. N. Zhuravlev
  • T. S. Kataeva


The electronic characteristics are studied for a Y-splitter based on trans-polyacetylene molecules using analytical calculations in the scope of a tight-binding approximation, as well as an ab initio simulation using the density functional theory (DFT). It is shown that based on such a splitter both a quantum interference transistor and a molecular diode could be developed. A semiphenomenological model of an interference transistor based on the Fano resonance is proposed. The effect of conformational transitions connected with the rotation of branches exerted on the distribution of the density of π-electron is studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carter, F.L., The molecular device computer: point of departure for large scale cellular automata, Phys. D: Nonlin. Phenom., 1984, vol. 10, no. 1, pp. 175–194.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aviram, A. and Ratner, M.A., Molecular rectifiers, Chem. Phys. Lett., 1974, vol. 29, no. 2, pp. 277–283.CrossRefGoogle Scholar
  3. 3.
    Bassani, D.M., Jonusauskaite, L., Lavie-Cambot, A., McClenaghan, N.D., Pozzo, J.-L., Ray, D., and Vives, G., Harnessing supramolecular interactions in organic solidstate devices: current status and future potential, Coord. Chem. Rev., 2010, vol. 254, nos. 19–20, pp. 2429–2445.CrossRefGoogle Scholar
  4. 4.
    Joachim, C., Renaud, N., and Hliwa, M., The different designs of molecule logic gates, Adv. Mater., 2012, vol. 24, no. 2, pp. 312–317.CrossRefGoogle Scholar
  5. 5.
    Feringa, B.L. and Browne, W.R., Molecular Switches, 2nd ed., Weinheim: Wiley-VCH, 2011.CrossRefGoogle Scholar
  6. 6.
    Otsuki, J., Akasaka, T., and Araki, K., Molecular switches for electron and energy transfer processes based on metal complexes, Coord. Chem. Rev., 2008, vol. 252, nos. 1–2, pp. 32–56.CrossRefGoogle Scholar
  7. 7.
    Fan, F.-R.F., Yao, Y., Cai, L., Cheng, L., Tour, J.M., and Bard, A.J., Structure-dependent charge transport and storage in self-assembled monolayers of compounds of interest in molecular electronics: effects of tip material, headgroup, and surface concentration, J. Am. Chem. Soc., 2004, vol. 126, no. 12, pp. 4035–4042.CrossRefGoogle Scholar
  8. 8.
    Le, J., Yan, H., Mead, C., Hoye, T.R., and Kiehl, R.A., Negative differential resistance in a bilayer molecular junction, in Proceedings of the 61st Device Research Conference, Salt Lake City, Utah, June 23–25, 2003, pp. 175–176.Google Scholar
  9. 9.
    Galperin, M., Ratner, M.A., and Nitzan, A., Histeresis, switching, and negative differential resistance in molecular junctions: a polaron model, Nano Lett., 2005, vol. 5, no. 1, pp. 125–130.Google Scholar
  10. 10.
    Metzger, R.M., Toher, C., Nozaki, D., and Cunibertiab, G., Unimolecular amplifier: principles of a threeterminal device with power gain, Nanoscale, 2013, vol. 5, pp. 6975–6984.CrossRefGoogle Scholar
  11. 11.
    Kocherzhenko, A.A., Grozema, F.C., and Siebbeles, L.D.A., Charge transfer through molecules with multiple pathways: quantum interference and dephasing, J. Phys. Chem., 2010, vol. 114, pp. 7973–7979.Google Scholar
  12. 12.
    Hsu, L.-Y. and Rabitz, H., Single-molecule phenylacetylene-macrocycle-based optoelectronic switch functioning as a quantum-interference-effect transistor, Phys. Rev. Lett., 2012, vol. 109, pp. 186801–1–186801–5.CrossRefGoogle Scholar
  13. 13.
    Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Caldwell, R., Huang, L., O’Brien, S., Yan, J., Breslow, R., Wind, Sh.J., Hone, J., Kim, Ph., and Nuckolls, C., Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules, Science, 2006, vol. 311, pp. 356–359.CrossRefGoogle Scholar
  14. 14.
    Sauvage, J.-P., Duplan, V., and Niess, F., Contractile and extensile molecular systems: towards molecular muscles, in Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, Izatt, R.M., Ed., Chichester: Wiley, 2016, pp. 444–464.CrossRefGoogle Scholar
  15. 15.
    Stoddart, J.F., The chemistry of the mechanical bond, Chem. Soc. Rev., 2009, vol. 38, pp. 1802–1820.CrossRefGoogle Scholar
  16. 16.
    Eelkema, R., Pollard, M.M., Vicario, J., Katsonis, N., Ramon, B.S., Bastiaansen, C.W.M., Broer, D.J., and Feringa, B.L., Molecular machines: nanomotor rotates microscale objects, Nature, 2006, vol. 440, no. 7081, p.163.CrossRefGoogle Scholar
  17. 17.
    Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge Univ. Press, 1995.CrossRefGoogle Scholar
  18. 18.
    Ellenbogen, J.C. and Love, J.C., Architectures for molecular electronic computers: 1. Logic structures and an adder design from molecular electronic diodes, Proc. IEEE, 2000, vol. 88, no. 3, pp. 386–426.CrossRefGoogle Scholar
  19. 19.
    Seminario, J.M., Zacharias, A.G., and Tour, J.M., Molecular alligator clips for single molecule electronics. Studies of group 16 and isonitriles interfaced with Au contacts, J. Am. Chem. Soc., 1998, vol. 121, pp. 411–416.CrossRefGoogle Scholar
  20. 20.
    Zahid, F., Paulsson, M., and Datta, S., Electrical conduction through molecules A2, in Advanced Semiconductor and Organic Nano-Techniques, Morkoc, H., San Diego: Academic, 2003, pp. 1–41.Google Scholar
  21. 21.
    Heeger, A.J., Kivelson, S., Schrieffer, J.R., and Su, W.P., Solitons in conducting polymers, Rev. Mod. Phys., 1988, vol. 60, no. 3, pp. 781–850.CrossRefGoogle Scholar
  22. 22.
    Miroshnichenko, A.E. and Kivshar, Yu.S., Engineering Fano resonances in descrete arrays, Phys. Rev. E, 2005, vol. 72, pp. 056611–1–056611–7.CrossRefGoogle Scholar
  23. 23.
    Mahan, G.D., Many-Particles Physics, New York: Plenum, 1993.Google Scholar
  24. 24.
    Gorbatsevich, A.A. and Shubin, N.M., Coalescence of resonances in dissipationless resonant tunneling structures and PT-symmetry breaking, Ann. Phys., 2017, vol. 376, pp. 353–371.CrossRefzbMATHGoogle Scholar
  25. 25.
    Gorbatsevich, A.A. and Zhuravlev, M.N., Localized electronic states in branching polyacetylene molecules, JETP Lett., 2014, vol. 100, no. 9, pp. 576–580.CrossRefGoogle Scholar
  26. 26.
    Caroli, C., Combescot, R., Nozieres, P., and Saint-James, D., Direct calculation of the tunneling current, J. Phys. C: Solid State Phys., 1971, vol. 4, pp. 916–929.CrossRefGoogle Scholar
  27. 27.
    Kopaev, Yu.V. and Molotkov, S.N., Bloch oscillations and dynamic conductivity of a superlattice, JETP Lett., 1994, vol. 59, pp. 800–808.Google Scholar
  28. 28.
    Deng, X.Q.Z.J.C., Zhang Z.H., Zhang, Z., Qiu, M., and Tang, G.P., Electrode conformation-induced negative differential resistance and rectifying performance in a molecular device, Appl. Phys. Lett., 2009, vol. 95, no. 16, pp. 163109–1–163109–3.CrossRefGoogle Scholar
  29. 29.
    Mahmoud, A. and Lugli, P., Study on molecular devices with negative differential resistance, Appl. Phys. Lett., 2013, vol. 103, no. 3, pp. 033506–1–033506–4.CrossRefGoogle Scholar
  30. 30.
    Kottas, G.S., Clarke, L.I., Horinek, D., and Michl, J., Artificial molecular rotors, Chem. Rev., 2005, vol. 105, no. 4, pp. 1281–1376.CrossRefGoogle Scholar
  31. 31.
    Toyota, S., Rotational isomerism involving acetylene carbon, Chem. Rev., 2010, vol. 110, no. 9, pp. 5398–5424.CrossRefGoogle Scholar
  32. 32.
    Huang, W., Zhu, Z., Wen, J., Wang, X., Qin, M., Cao, Y., Ma, H., and Wang, W., Single molecule study of forceinduced rotation of carbon-carbon double bonds in polymers, ACS Nano, 2017, vol. 11, no. 1, pp. 194–203.CrossRefGoogle Scholar
  33. 33.
    Kronemeijer, A.J., Akkerman, H.B., Kudernac, T., van Wees, B.J., Feringa, B.L., Blom, P.W.M., and de Boer, B., Reversible conductance switching in molecular devices, Adv. Mater., 2008, vol. 20, no. 8, pp. 1467–1473.CrossRefGoogle Scholar
  34. 34.
    Xiang, D., Wang, X., Jia, Ch., Lee, T., and Guo, X., Molecular-scale electronics: from concept to function, Chem. Rev., 2016, vol. 116, pp. 4318–4440.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Gorbatsevich
    • 1
    • 2
  • M. N. Zhuravlev
    • 2
  • T. S. Kataeva
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research University MIETZelenogradRussia

Personalised recommendations