Skip to main content

Simulating the chlorine plasma etching profile of high-aspect-ratio trenches in Si


We simulate etching trenches in Si with a high (over 15) aspect ratio, i.e., the ratio between the trench depth and width in Cl2 plasma in wide ranges of the ratio between the flows of Cl atoms and Cl+ ions (3–300) and ion energies (50–250 eV). We demonstrate that the trenches with a high aspect (HA) ratio (~20) and almost vertical walls can be formed at the maximum energies of E i = 250 eV and R = 300. At the lower values of these parameters, etching an HA-ratio trench is accompanied by its narrowing, curvature, or bending. We discuss the origin of the HA-trench bending effect at small R values and a high energy of the incident ions.

This is a preview of subscription content, access via your institution.


  1. 1.

    Donnelly, V.M. and Kornblit, A., Plasma etching: yesterday, today, and tomorrow, J. Vac. Sci. Technol. A, 2013, vol. 31, no. 5, p. 050825–1.

    Article  Google Scholar 

  2. 2.

    Mourey, O., Petit-Etienne, C., Cunge, G., Darnon, M., Despiau-Pujo, E., Brichon, P., Lattu-Romain, E., Pons, M., and Joubert, O., Roughness generation during Si etching in Cl2 pulsed plasma, J. Vac. Sci. Technol. A, 2016, vol. 34, no. 4, pp. 041306–1–041306–12.

    Article  Google Scholar 

  3. 3.

    Shumilov, A.S., Amirov, I.I., and Lukichev, V.F., Simulation of the effects of deep grooving in silicon in the plasmochemical cyclic process, Russ. Microelectron., 2009, vol. 38, no. 6, pp. 385–392.

    Article  Google Scholar 

  4. 4.

    Chang, J.P., Mahorowala, A.P., and Sawin, H.H., Plasma-surface kinetics and feature profile evolution in chlorine etching of polysilicon, J. Vac. Sci. Technol. A, 1998, vol. 16, no. 1, pp. 217–224.

    Article  Google Scholar 

  5. 5.

    Hoekstra, R.J., Grapperhaus, M.J., and Kushner, M.J., Integrated plasma equipment model for polysilicon etch profiles in an inductively coupled plasma reactor with subwafer and superwafer topography, J. Vac. Sci. Technol. A, 1997, vol. 15, no. 4, pp. 1913–1921.

    Article  Google Scholar 

  6. 6.

    Mahorowala, A.P. and Sawin, H.H., Etching of polysilicon in inductively coupled Cl2 and HBr discharges. II. Simulation of profile evolution using cellular representation of feature composition and Monte Carlo computation of flux and surface kinetics, J. Vac. Technol. B, 2002, vol. 20, no. 3, p. 1064.

    Article  Google Scholar 

  7. 7.

    Jin, W. and Sawin, H.H., Feature profile evolution in high-density plasma etching of silicon with Cl2, J. Vac. Sci. Technol. A, 2003, vol. A21, no. 4, pp. 911–921.

    Article  Google Scholar 

  8. 8.

    Osano, Y. and Ono, K., An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching, Jpn. J. Appl. Phys., 2005, vol. 44, p. 8650.

    Article  Google Scholar 

  9. 9.

    Hoang, J., Hsu, C.-C., and Chang, J.P., Feature profile evolution during shallow trench isolation etch in chlorine-based plasmas. I. Feature scale modeling, J. Vac. Sci. Technol., 2008, vol. B26, no. 6, pp. 1912–1918.

    Google Scholar 

  10. 10.

    Guo, W., Bai, B., and Sawin, H.H., Mixing-layer kinetics model for plasma etching and the cellular realization in three-dimensional profile simulator, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 2, pp. 388–403.

    Article  Google Scholar 

  11. 11.

    Zhang, S.-Q., Dai, Z.-L., Song, Y.-H., and Wang, Y.-N., Effect of reactant transport on the trench profile evolution for silicon etching in chlorine plasmas, Vacuum, 2014, vol. 99, pp. 180–188.

    Article  Google Scholar 

  12. 12.

    Zhang, Y., Huard, C., Sriraman, S., Belen, J., Paterson, A., and Kushner, M.J., Investigation of feature orientation and consequences of ion tilting during plasma etching with a three-dimensional feature profile simulator, J. Vac. Sci. Technol. A, 2017, vol. 35, no. 2, p. 021303.

    Article  Google Scholar 

  13. 13.

    Wang, M. and Kushner, M.J., High energy electron fluxes in dc-augmented capacitively coupled plasmas. II. Effects on twisting in high aspect ratio etching of dielectrics, J. Appl. Phys., 2010, vol. 107, no. 2, p. 023309.

    Article  Google Scholar 

  14. 14.

    Shumilov, A.S., Amirov, I.I., and Lukichev, V.F., Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma, Russ. Microelectron., 2016, vol. 45, no. 3, pp. 167–179.

    Article  Google Scholar 

  15. 15.

    Lane, J.M., Bogart, K.H.A., Klemens, F.P., and Lee, J.T.C., The role of feed gas chemistry, mask material, and processing parameters in profile evolution during plasma etching of Si (100), J. Vac. Sci. Technol. A, 2000, vol. 18, no. 5, pp. 2067–2079.

    Article  Google Scholar 

  16. 16.

    Bogart, K.H.A., Klemens, F.P., Malyshev, M.V., Colonell, J.I., Donnely, V.M., Lee, J.T., and Lane, J.M., Mask charging and profile evolution during chlorine plasma etching of silicon, J. Vac. Sci. Technol. A, 2000, vol. 18, no. 1, pp. 197–206.

    Article  Google Scholar 

  17. 17.

    Zhang, D. and Kushner, M.J., Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models, J. Vac. Sci. Technol. A, 2001, vol. 19, no. 2, pp. 524–538.

    Article  Google Scholar 

  18. 18.

    Liu, Z., Wu, Y., Harteneck, B., and Olynick, D., Super-selective cryogenic etching for sub-10 nm features, Nanotechnology, 2013, vol. 24, p. 015305.

    Article  Google Scholar 

  19. 19.

    Arnold, J.C. and Sawin, H.H., Charging of pattern features during plasma etching, J. Appl. Phys., 1991, vol. 70, no. 15, pp. 5314–5315.

    Article  Google Scholar 

  20. 20.

    Hwang, G.S. and Giapis, K.P., The influence of surface currents on pattern-dependent charging and notching, J. Appl. Phys., 1998, vol. 84, no. 2, pp. 683–689.

    Article  Google Scholar 

  21. 21.

    Miyake, M., Negishi, N., Izawa, M., Yokogawa, K., Oyama, M., and Kanekiyo, T., Effects of mask and necking deformation on bowing and twisting in highaspect-ratio contact hole etching, Jpn. J. Appl. Phys., 2009, vol. 48, p. 08HE01.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Shumilov.

Additional information

Original Russian Text © A.S. Shumilov, I.I. Amirov, V.F. Luckichev, 2017, published in Mikroelektronika, 2017, Vol. 46, No. 5, pp. 323–331.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shumilov, A.S., Amirov, I.I. & Luckichev, V.F. Simulating the chlorine plasma etching profile of high-aspect-ratio trenches in Si. Russ Microelectron 46, 301–308 (2017).

Download citation