Russian Microelectronics

, Volume 46, Issue 5, pp 301–308 | Cite as

Simulating the chlorine plasma etching profile of high-aspect-ratio trenches in Si

  • A. S. ShumilovEmail author
  • I. I. Amirov
  • V. F. Luckichev


We simulate etching trenches in Si with a high (over 15) aspect ratio, i.e., the ratio between the trench depth and width in Cl2 plasma in wide ranges of the ratio between the flows of Cl atoms and Cl+ ions (3–300) and ion energies (50–250 eV). We demonstrate that the trenches with a high aspect (HA) ratio (~20) and almost vertical walls can be formed at the maximum energies of E i = 250 eV and R = 300. At the lower values of these parameters, etching an HA-ratio trench is accompanied by its narrowing, curvature, or bending. We discuss the origin of the HA-trench bending effect at small R values and a high energy of the incident ions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donnelly, V.M. and Kornblit, A., Plasma etching: yesterday, today, and tomorrow, J. Vac. Sci. Technol. A, 2013, vol. 31, no. 5, p. 050825–1.CrossRefGoogle Scholar
  2. 2.
    Mourey, O., Petit-Etienne, C., Cunge, G., Darnon, M., Despiau-Pujo, E., Brichon, P., Lattu-Romain, E., Pons, M., and Joubert, O., Roughness generation during Si etching in Cl2 pulsed plasma, J. Vac. Sci. Technol. A, 2016, vol. 34, no. 4, pp. 041306–1–041306–12.CrossRefGoogle Scholar
  3. 3.
    Shumilov, A.S., Amirov, I.I., and Lukichev, V.F., Simulation of the effects of deep grooving in silicon in the plasmochemical cyclic process, Russ. Microelectron., 2009, vol. 38, no. 6, pp. 385–392.CrossRefGoogle Scholar
  4. 4.
    Chang, J.P., Mahorowala, A.P., and Sawin, H.H., Plasma-surface kinetics and feature profile evolution in chlorine etching of polysilicon, J. Vac. Sci. Technol. A, 1998, vol. 16, no. 1, pp. 217–224.CrossRefGoogle Scholar
  5. 5.
    Hoekstra, R.J., Grapperhaus, M.J., and Kushner, M.J., Integrated plasma equipment model for polysilicon etch profiles in an inductively coupled plasma reactor with subwafer and superwafer topography, J. Vac. Sci. Technol. A, 1997, vol. 15, no. 4, pp. 1913–1921.CrossRefGoogle Scholar
  6. 6.
    Mahorowala, A.P. and Sawin, H.H., Etching of polysilicon in inductively coupled Cl2 and HBr discharges. II. Simulation of profile evolution using cellular representation of feature composition and Monte Carlo computation of flux and surface kinetics, J. Vac. Technol. B, 2002, vol. 20, no. 3, p. 1064.CrossRefGoogle Scholar
  7. 7.
    Jin, W. and Sawin, H.H., Feature profile evolution in high-density plasma etching of silicon with Cl2, J. Vac. Sci. Technol. A, 2003, vol. A21, no. 4, pp. 911–921.CrossRefGoogle Scholar
  8. 8.
    Osano, Y. and Ono, K., An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching, Jpn. J. Appl. Phys., 2005, vol. 44, p. 8650.CrossRefGoogle Scholar
  9. 9.
    Hoang, J., Hsu, C.-C., and Chang, J.P., Feature profile evolution during shallow trench isolation etch in chlorine-based plasmas. I. Feature scale modeling, J. Vac. Sci. Technol., 2008, vol. B26, no. 6, pp. 1912–1918.Google Scholar
  10. 10.
    Guo, W., Bai, B., and Sawin, H.H., Mixing-layer kinetics model for plasma etching and the cellular realization in three-dimensional profile simulator, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 2, pp. 388–403.CrossRefGoogle Scholar
  11. 11.
    Zhang, S.-Q., Dai, Z.-L., Song, Y.-H., and Wang, Y.-N., Effect of reactant transport on the trench profile evolution for silicon etching in chlorine plasmas, Vacuum, 2014, vol. 99, pp. 180–188.CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Huard, C., Sriraman, S., Belen, J., Paterson, A., and Kushner, M.J., Investigation of feature orientation and consequences of ion tilting during plasma etching with a three-dimensional feature profile simulator, J. Vac. Sci. Technol. A, 2017, vol. 35, no. 2, p. 021303.CrossRefGoogle Scholar
  13. 13.
    Wang, M. and Kushner, M.J., High energy electron fluxes in dc-augmented capacitively coupled plasmas. II. Effects on twisting in high aspect ratio etching of dielectrics, J. Appl. Phys., 2010, vol. 107, no. 2, p. 023309.CrossRefGoogle Scholar
  14. 14.
    Shumilov, A.S., Amirov, I.I., and Lukichev, V.F., Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma, Russ. Microelectron., 2016, vol. 45, no. 3, pp. 167–179.CrossRefGoogle Scholar
  15. 15.
    Lane, J.M., Bogart, K.H.A., Klemens, F.P., and Lee, J.T.C., The role of feed gas chemistry, mask material, and processing parameters in profile evolution during plasma etching of Si (100), J. Vac. Sci. Technol. A, 2000, vol. 18, no. 5, pp. 2067–2079.CrossRefGoogle Scholar
  16. 16.
    Bogart, K.H.A., Klemens, F.P., Malyshev, M.V., Colonell, J.I., Donnely, V.M., Lee, J.T., and Lane, J.M., Mask charging and profile evolution during chlorine plasma etching of silicon, J. Vac. Sci. Technol. A, 2000, vol. 18, no. 1, pp. 197–206.CrossRefGoogle Scholar
  17. 17.
    Zhang, D. and Kushner, M.J., Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models, J. Vac. Sci. Technol. A, 2001, vol. 19, no. 2, pp. 524–538.CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Wu, Y., Harteneck, B., and Olynick, D., Super-selective cryogenic etching for sub-10 nm features, Nanotechnology, 2013, vol. 24, p. 015305.CrossRefGoogle Scholar
  19. 19.
    Arnold, J.C. and Sawin, H.H., Charging of pattern features during plasma etching, J. Appl. Phys., 1991, vol. 70, no. 15, pp. 5314–5315.CrossRefGoogle Scholar
  20. 20.
    Hwang, G.S. and Giapis, K.P., The influence of surface currents on pattern-dependent charging and notching, J. Appl. Phys., 1998, vol. 84, no. 2, pp. 683–689.CrossRefGoogle Scholar
  21. 21.
    Miyake, M., Negishi, N., Izawa, M., Yokogawa, K., Oyama, M., and Kanekiyo, T., Effects of mask and necking deformation on bowing and twisting in highaspect-ratio contact hole etching, Jpn. J. Appl. Phys., 2009, vol. 48, p. 08HE01.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Shumilov
    • 1
    Email author
  • I. I. Amirov
    • 1
  • V. F. Luckichev
    • 2
  1. 1.Institute of Physics and Technology, Yaroslavl’ BranchRussian Academy of SciencesYaroslavl’Russia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations