Skip to main content
Log in

Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The model and the results of the modeling of etching deep grooves in Si in Сl2/Ar plasma as a function of the energy of Cl+ and Ar+ incident ions (30–250 eV), taking into consideration the redeposition of the reaction products, which are removed from the groove bottom, are represented. The groove profiles with an aspect ratio (depth-to-width groove ratio) below 5 and Si atom yield coefficients per ion as a function of the incident ion energy were in agreement with the reference data. The profile evolution of the deep grooves with an aspect ratio (AR) of up to 10 at different energies of the incident ions is shown. The influence of the redeposition coefficient of the scattered particles and the shape of the mask on the groove profile is considered. The reasons for distorting the profile of the high-aspect grooves during their etching in the Сl2/Ar plasma are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donnelly, V.M. and Kornblit, A., Plasma etching: yesterday, today, and tomorrow, J. Vac. Sci. Technol. A, 2013, vol. 31, no. 5, p. 050825-1.

    Article  Google Scholar 

  2. Tinck, S., Boullar, W., and Bogaerts, A., Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating, Plasma Sources Sci. Technol., 2011, vol. 20, no. 4, p. 045012-19.

    Article  Google Scholar 

  3. Lane, J.M., Klemens, F.P., Bogart, K.H.A., Malyshev, M.V., and Lee, J.T.C., Feature evolution during plasma etching. polycrystalline silicon etching, J. Vac. Sci. Technol. A, 2000, vol. 18, no. 1, pp. 188–196.

    Article  Google Scholar 

  4. Chang, S.J., Arnold, J.C., Zau, G.C., Shin, H.-S., and Sawin, H.H., Kinetic study of low energy argon ionenhanced plasma etching of polysilicon with atomic/molecular chlorine, J. Vac. Sci. Technol., 1997, vol. 15, no. 4, pp. 1853–1864.

    Article  Google Scholar 

  5. Chang, J.P., Mahorowala, A.P., and Sawin, H.H., Plasma-surface kinetics and feature profile evolution in chlorine etching of polysilicon, J. Vac. Sci. Technol. A, 1998, vol. 16, no. 1, pp. 217–224.

    Article  Google Scholar 

  6. Hoekstra, R.J., Grapperhaus, M.J., and Kushner, M.J., Integrated plasma equipment model for polysilicon etch profiles in an inductively coupled plasma reactor with subwafer and superwafer topography, J. Vac. Sci. Technol. A, 1997, vol. 15, no. 4, pp. 1913–1921.

    Article  Google Scholar 

  7. Abdollahi-Alibeik, S., Zheng, J., McVittie, J.P., Saraswat, K.C., Gabriel, C.T., and Abraham, S.C., Analytical modeling of silicon etch process in high density plasma, J. Vac. Technol. B, 2001, vol. 19, no. 1, pp. 179–185.

    Article  Google Scholar 

  8. Mahorowala, A.P. and Sawin, H.H., Etching of polysilicon in inductively coupled Cl2 and HBr discharges. II. Simulation of profile evolution using cellular representation of feature composition and Monte Carlo computation of flux and surface kinetics, J. Vac. Technol. B, 2002, vol. 20, no. 3, pp. 1064–1076.

    Article  Google Scholar 

  9. Jin, W. and Sawin, H.H., Feature profile evolution in high-density plasma etching of silicon with Cl2, J. Vac. Sci. Technol. A, 2003, vol. 21, no. 4, pp. 911–921.

    Article  Google Scholar 

  10. Osano, Y. and Ono, K., An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching, Jpn. J. Appl. Phys., 2005, vol. 44, pp. 8650–8660.

    Article  Google Scholar 

  11. Yin, Y. and Sawin, H.H., Angular etching yields of polysilicon and dielectric materials in Cl2/Ar and fluorocarbon plasmas, J. Vac. Sci. Technol. A, 2008, vol. 26, no. 13, pp. 161–173.

    Article  Google Scholar 

  12. Guo, W. and Sawin, H.H., Modeling of the angular dependence of plasma etching, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 6, pp. 1326–1336.

    Article  Google Scholar 

  13. Wang, M. and Kushner, M.J., High energy electron fluxes in dc-augmented capacitively coupled plasmas. II. Effects on twisting in high aspect ratio etching of dielectrics, J. Appl. Phys., 2010, vol. 107, no. 2, p. 023309.

    Article  Google Scholar 

  14. Agarwal, A. and Kushner, M.J., Plasma atomic layer etching using conventional plasma equipment, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 1, pp. 37–50.

    Article  Google Scholar 

  15. Shumilov, A.S. and Amirov, I.I., Modeling of deep grooving of silicon in the process of plasmochemical cyclic etching/passivation, Russ. Microelectron., 2007, vol. 36, no. 4, pp. 241–250.

    Article  Google Scholar 

  16. Eckstein, W., Computer Simulation of Ion-Solid Interactions, Berlin: Springer, 1991.

  17. Cheng, C.C., Guinn, K.V., Donnelly, V.M., and Herman, I.P., In situ laser-induced thermal desorption studies of the silicon chloride surface layer during silicon etching in high density plasmas of Cl2 and Cl2/O2 mixtures, J. Vac. Sci. Technol. A, 1994, vol. 12, p. 2630.

    Article  Google Scholar 

  18. Guo, W., Bai, B., and Sawin, H.H., Mixing-layer kinetics model for plasma etching and the cellular realization in three-dimensional profile simulator, J. Vac. Sci. Technol. A, 2009, vol. 27, no. 2, pp. 388–403.

    Article  Google Scholar 

  19. Belen, J.R., Gomez, S., Kiehbauch, M., Cooperberg, D., and Aydil, E.S., Feature-scale model of Si etching in SF6 plasma and comparison with experiments, J. Vac. Sci. Technol. A, 2005, vol. 23, no. 1, pp. 99–113.

    Article  Google Scholar 

  20. Liu, X.-Y., Daw, M.S., Kress, J.D., Hanson, D.E., Arunachalam, V., Coronell, D.G., Liu, C.-L., and Voter, A.F., Ion solid surface interactions in ionized copper physical vapor deposition, Thin Solid Films, 2002, vol. 422, pp. 141–149.

    Article  Google Scholar 

  21. Steinbruchel, C., Universal energy dependence of physical and ion-enhanced chemical etch yields at low ion energy, Appl. Phys. Lett., 1989, vol. 55, pp. 1960–1962.

    Article  Google Scholar 

  22. Hoekstra, R.J. and Kushner, M.J., Microtrenching resulting from specular during chlorine etching of silicon, J. Vac. Technol. B, 1998, vol. 16, no. 4, pp. 2102–2104.

    Article  Google Scholar 

  23. Coburn, J.W. and Winters, H.F., Conductance considerations in the reactive ion etching of high aspect ratio features, Appl. Phys. Lett., 1989, vol. 55, no. 26, pp. 2730–2732.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shumilov.

Additional information

Original Russian Text © A.S. Shumilov, I.I. Amirov, V.F. Lukichev, 2016, published in Mikroelektronika, 2016, Vol. 45, No. 3, pp. 177–189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumilov, A.S., Amirov, I.I. & Lukichev, V.F. Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma. Russ Microelectron 45, 167–179 (2016). https://doi.org/10.1134/S1063739716030070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739716030070

Keywords

Navigation