Russian Microelectronics

, Volume 43, Issue 7, pp 477–482 | Cite as

Features of the integration of graphenes in microelectronic technology

  • I. I. Bobrinetskii
  • I. A. Komarov
  • K. K. Lavrent’ev
  • D. D. Levin
  • M. M. Simunin
  • V. K. Nevolin
  • L. D. Kvacheva
  • S. P. Chervonobrodov
  • A. Burian
  • L. Khavelek
  • N. Voznitsa
Article

Abstract

Techniques have been developed for forming integrated graphene structures on a silicon wafer surface by mechanical and chemical splitting and chemical vapor deposition. The imperfection of the fabricated structures has been investigated by atomic force microscopy and X-ray diffraction. For the aerosol technique of deposition of mechanically spit graphite, the regularity has been revealed in the reduction of the graphene sheet size with increasing pressure. The correlation of the topographic defects of graphene material and the structural defects observed in X-ray diffraction patterns is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu, W. and Lieber, C.M., Nanoelectronics from the bottom up, Nature, 2007, vol. 6, pp. 841–850.CrossRefGoogle Scholar
  2. 2.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 2005, vol. 438, pp. 197–200.CrossRefGoogle Scholar
  3. 3.
    Geim, K. and Novoselov, K.S., The rise of graphene, Nature Mater., 2007, vol. 6, pp. 183–191.CrossRefGoogle Scholar
  4. 4.
    Subrahmanyam, K.S., Vivekchand, S.R.C., Govindaraj, A., and Rao, C.N.R., A study of graphenes prepared by different methods: characterization, properties and solubilization, J. Mater. Chem., 2008, vol. 18, pp. 1517–1523.CrossRefGoogle Scholar
  5. 5.
    Loh, K.P., Bao, Q., Ang, P.K., and Yang, J., The chemistry of graphene, J. Mater. Chem., 2010, vol. 20, pp. 2277–2289.CrossRefGoogle Scholar
  6. 6.
    Park, S. and Ruoff, R.S., Chemical methods for the production of graphenes, Nature Nanotechnol., 2009, vol. 4, pp. 217–219.CrossRefGoogle Scholar
  7. 7.
    Sutter, P.W., Flege, J.-I., and Sutter, E.A., Epitaxial graphene on ruthenium, Nature Mater., 2008, vol. 7, pp. 406–411.CrossRefGoogle Scholar
  8. 8.
    Bae, S., Kim, H., Lee, Y., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnol., 2010, vol. 5, pp. 574–578.CrossRefGoogle Scholar
  9. 9.
    Lotya, M., Hernandez, Y., King, P.J., et al., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 2009, vol. 131, pp. 3611.CrossRefGoogle Scholar
  10. 10.
    Green, A.A. and Hersam, M.C., Solution phase production of graphene with controlled thickness via density differentiation, Nano Lett., 2009, vol. 9, pp. 4031–4036.CrossRefGoogle Scholar
  11. 11.
    Liang, Y., Wu D., and Feng, X., Dispersion of graphene sheets in organic solvent supported by ionic interactions, Adv. Mater., 2009, vol. 21, pp. 1679–1683.CrossRefGoogle Scholar
  12. 12.
    Lotya, M., King, P.J., Khan, U., et al., High-concentration, surfactant-stabilized graphene dispersions, ACS Nano, 2010, vol. 4, pp. 3155–3162.CrossRefGoogle Scholar
  13. 13.
    Hummers, W. and Offeman, R., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, pp. 1339.CrossRefGoogle Scholar
  14. 14.
    Philipp, K. and Cinzia, C., Raman spectroscopy of graphene in different dielectric solvents, PSS, 2010, vol. 7, pp. 2735–2738.Google Scholar
  15. 15.
    Gengler, R.Y.N., Veligura, A., Enotiadis, A., et al., Large-yield preparation of high-electronic-quality graphene by a Langmuir-Schaefer approach, Small, 2010, vol. 6, pp. 35–39.CrossRefGoogle Scholar
  16. 16.
    Seung, H.H., Ju, H.-M., and Choi, S.-H., X-ray diffraction patterns of thermally-reduced graphenes, J. Korean Phys. Soc., 2010, vol. 6, pp. 1649–1652.CrossRefGoogle Scholar
  17. 17.
    Srinivas, G., Zhu, Y., Piner, R., et al., Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity, Carbon, 2010, vol. 48, pp. 630–635.CrossRefGoogle Scholar
  18. 18.
    Hawelek, L., Wrzalik, W., Brodka, A., et al., A pulsed neutron diffraction study of the topological defects presence in carbon nanohorns, Chem. Phys. Lett., 2011, vol. 502, pp. 87–91.CrossRefGoogle Scholar
  19. 19.
    Svergun, D.I. and Feigin, L.A., Rentgenovskoe i neitronnoe malouglovoe rasseyanie (X-Ray and Neutron Low-Angle Scattering), Moscow: Nauka, 1986.Google Scholar
  20. 20.
    Warren, B.E. and Bodenstain, P., The diffraction pattern of fine particle carbon blacks, Acta Cryst., 1965, vol. 18, pp. 282–286.CrossRefGoogle Scholar
  21. 21.
    Dore, J.C., Sliwinski, M., Burian, A., et al., Structural studies of activated carbons by pulsed neutron diffraction, J. Phys: Condensed Matter, 1999, vol. 11, pp. 9189.Google Scholar
  22. 22.
    Bobrinetskii, I., Nevolin, V., and Simunin, M., Technology of fabrication of carbon nanotubes by catalytic pyrolysis of ethanol from the vapor phase, Theor. Found. Chem. Engin., 2007, vol. 41, no. 5, pp. 639–643.CrossRefGoogle Scholar
  23. 23.
    Park, J.-U., Nam, S. W., Lee, M.-S., and Lieber, M.C., Synthesis of monolithic graphene-graphite integrated electronics, Nature Mater., 2012, no. 11, pp. 120–125.Google Scholar
  24. 24.
    Yamazaki, Y., Isobayashi, A., Suzuki, M., et al., Low-temperature graphene growth originating at crystalline facets of catalytic metal, Appl. Phys. Express, 2012, vol. 5, p. 750.CrossRefGoogle Scholar
  25. 25.
    Reina, A., Jia, X., Ho, J., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 2009, vol. 9, pp. 30–35.CrossRefGoogle Scholar
  26. 26.
    Usachev, D., Dobrotvorskii, À., Shikin, À. et al., Graphene morphology on Ni single-crystal surfaces: experimental and theoretical investigation, Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 5, pp. 679–682.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. I. Bobrinetskii
    • 1
  • I. A. Komarov
    • 1
  • K. K. Lavrent’ev
    • 1
  • D. D. Levin
    • 1
  • M. M. Simunin
    • 1
  • V. K. Nevolin
    • 1
  • L. D. Kvacheva
    • 2
  • S. P. Chervonobrodov
    • 3
  • A. Burian
    • 4
  • L. Khavelek
    • 4
  • N. Voznitsa
    • 4
  1. 1.National Research University Moscow Institute of Electronic Technology (MIET)MoscowRussia
  2. 2.Nesmayanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.OOO CarbonlightMoscow oblast, DolgoprudnyiRussia
  4. 4.Chelkovski Institute of PhysicsSilesia UniversityKatowicePoland

Personalised recommendations