Skip to main content

Self-organization process under electrolytic formation of nanostructures in silicon-based semi-conducting systems

Abstract

A role of surface processes in the developing dynamics of electrochemical reactions between silicon and fluorine-containing electrolytes during the pore-formation in silicon matrix, which is required for the surface and volume nanostructuring technologies, is examined. The charge exchange processes between the media via the surface were shown to be responsible for the observed anodizing regimes: stable, oscillation, and chaotic. The proposed approach enables one to explain the anodizing regime as associated with synchronized variations of the pore shapes and the global oscillation processes in the silicon/electrolyte system. The data obtained may be applied to the engineering of three-dimensional electron systems.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Prigogine, I., From Being to Becoming: Time and Complexity in the Physical Sciences, San-Francisco: W.H. Freeman and Company, 1980.

    Google Scholar 

  2. 2.

    Gaponov-Grekhov, A.V. and Nekorkin, V.I., Nelineinye Volny’2010 (Nonlinear Waves’2010), Nizhnii Novgorod: Institute of Applied Physics RAS, 2011.

    Google Scholar 

  3. 3.

    Smith, R.L. and Collins, S.D., J. Appl. Phys., 1992, vol. 71, no. 8, pp. R1–R22.

    Article  Google Scholar 

  4. 4.

    John, G.C. and Singh, V.A., Phys. Rep., 1995, vol. 263, pp. 93–151.

    Article  Google Scholar 

  5. 5.

    Bisi, O., Ossicini, S., and Pavesi, L., Surf. Sci. Rep., 2000, vol. 38, pp. 1–126.

    Article  Google Scholar 

  6. 6.

    Foell, H., Appl. Phys. A, 1991, vol. 53, pp. 8–19.

    Article  Google Scholar 

  7. 7.

    Prokaznikov, A.V. and Buchin, E.Yu., Phys. Low-Dim. Struct., 1992, vols. 5/6, pp. 117–122.

    Google Scholar 

  8. 8.

    Buchin, E.Yu. and Prokaznikov, A.V., Tech. Phys. Lett., 1997, vol. 23, no. 3, pp. 169–171.

    Article  Google Scholar 

  9. 9.

    Cartensen, J., Prange, R., Poprikov, G.S., and Foll, H., Appl. Phys. A, 1998, vol. 67, no. 4, pp. 459–467.

    Article  Google Scholar 

  10. 10.

    Cartensen, J., Prange, R., Poprikov, G.S., and Foll, H., J. Electrochem. Soc., 1999, vol. 146, no. 3, pp. 1134–1140.

    Article  Google Scholar 

  11. 11.

    Kochergin, V. and Foell, H., Porous Semiconductors. Optical Properties and Applications, London: Springer, 2009.

    Book  Google Scholar 

  12. 12.

    Laptev, A.N., Prokaznikov, A.V., and Rud’, N.A., Tech. Phys. Lett., 2000, vol. 26, no. 12, pp. 1049–1052.

    Article  Google Scholar 

  13. 13.

    Laptev, A.N., Prokaznikov, A.V., and Rud’, N.A., Journal of Nano and Microsystem Technique, 2002, vol. 6, pp. 31–40.

    Google Scholar 

  14. 14.

    Wang, W., Kiss, I.Z., and Hudson, J.L., Chaos, 2000, vol. 10, no. 1, pp. 248–256.

    Article  Google Scholar 

  15. 15.

    Moehlis, J., J. Nonlinear Sci., 2002, vol. 12, pp. 319–345.

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Kolesov, A.Yu. and Mishchenko, E.F., Math. USSR Sb., 1991, vol. 70, no. 1, pp. 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Arnol’d, V., Afraimovich, V.S., Il’yashenko, Yu.S., and Shil’nikov, L.P., Bifurcation Theory in Sovremennye problemy matematiki. Fundamental’nye napravleniya (Modern Problems of Mathematics. Fundamental Trends), Arnol’d, V.I., Ed., Moscow: VINITI, 1985, vol. 5, pp. 7–218.

    Google Scholar 

  18. 18.

    Babanov, Yu.E., Prokaznikov, A.V., Rud’, N.A., and Svetovoy, V.B., Phys. Status Solidi A, 1997, vol. 162, no. 1, pp. R7–R8.

    Article  Google Scholar 

  19. 19.

    Babanov, Yu.E., Buchin E.Yu., Prokaznikov, A.V., and Svetovoy, V.B., Phys. Status Solidi A, 1997, vol. 161, no. 1, pp. R1–R2.

    Article  Google Scholar 

  20. 20.

    Blackmore, J.S., Solid State Physics, Phyladelphia-London-Toronto: W. B. Saunders Company, 1970.

    Google Scholar 

  21. 21.

    Ulin, V.P. and Konnikov, S.G., Semiconductors, 2007, vol. 41, no. 7, pp. 832–844.

    Article  Google Scholar 

  22. 22.

    Ulin, V.P. and Konnikov, S.G., Semiconductors, 2007, vol. 41, no. 7, pp. 845–854.

    Article  Google Scholar 

  23. 23.

    Lehmann, V. and Gosele, U., Appl. Phys. Lett., 1991, vol. 58, no. 8, pp. 856–858.

    Article  Google Scholar 

  24. 24.

    Propst, E.K. and Kohl, P.A., J. Electrochem. Soc., 1994, vol. 141, no. 4, pp. 1006–1013.

    Article  Google Scholar 

  25. 25.

    Trucks, G.W., Raghavachari, K., Higashi, G. S., and Ghabal, Y.J., Phys. Rev. Lett., 1990, vol. 65, no. 4, pp. 504–507.

    Article  Google Scholar 

  26. 26.

    Zhang, G. X., Porous silicon: morphology and formation mechanisms in Modern Aspects of Electrochemistry, Vayenas, C., Ed., New York: Springer-Verlag, 2005, vol. 39, pp. 65–133.

    Google Scholar 

  27. 27.

    Sailor, M. J., Porous Silicon in Practice: Preparation, Characterization and Applications, New York: Wiley-VCH Verlag GmbH & Co. KGaA, 2012.

    Google Scholar 

  28. 28.

    Vanmaeklbergh, D. and Searson, P.C., J. Electrochem. Soc., 1994, vol. 141, no. 3, pp. 697–702.

    Article  Google Scholar 

  29. 29.

    Buchin, E. Yu., Churilov, A. B., and Prokaznikov, A. V., Appl. Surf. Sci., 1996, vol. 102, pp. 431–435.

    Article  Google Scholar 

  30. 30.

    Prokaznikov, A.V. and Svetovoy, V.B., Phys. Low-Dim. Struct., 2002, vols. 9/10, pp, 65–69.

    Google Scholar 

  31. 31.

    Winters, F. H., Graves, D. B., Humbird, D., and Tougaard, S., J. Vac. Sci. Technol., A, 2007, vol. 25, pp. 96–103.

    Article  Google Scholar 

  32. 32.

    Bilenko, D.I., Belobrovaya, O.Ya., Zharkova, E.A., Mysenko, I.B., and Khasina, E.I., Semiconductors, 2002, vol. 36, no. 4, pp. 466–471.

    Article  Google Scholar 

  33. 33.

    Bilenko, D.I., Belobrovaya, O.Ya., Zharkova, E.A., Terin, D.V., and Khasina, E.I., Semiconductors, 2005, vol. 39, no. 74, pp. 800–804.

    Article  Google Scholar 

  34. 34.

    Babanov, Yu., Prokaznikov, A., and Svetovoy, V., J. Phys.: Condens. Matter, 1989, vol. 1, pp. SB197–SB198.

    Google Scholar 

  35. 35.

    Babanov, Yu. E., Prokaznikov, A. V., and Svetovoy, V. B., Vacuum, 1990, vol. 41, pp. 902–905.

    Article  Google Scholar 

  36. 36.

    Winters, H.F. and Coburn, J. W., Surf. Sci. Rep., 1992, vol. 14, nos. 4–6, pp. 165–265.

    Google Scholar 

  37. 37.

    Andronov, A.A., Vitt, A.A., and Khaikin, C.E., Theory of Oscillators, Oxford, New York: Pergamon Press, 1966.

    MATH  Google Scholar 

  38. 38.

    Loskutov, A.Yu. and Mikhailov, A.S., Foundations of Synergetics, Berlin: Springer-Verlag, 1990.

    Google Scholar 

  39. 39.

    Kapliy, S.A., Prokaznikov, A.V., and Rud’, N.A., Tech. Phys. Lett., 2004, vol. 30, no. 7, pp. 595–597.

    Article  Google Scholar 

  40. 40.

    Kapliy, S.A., Prokaznikov, A.V., and Rud’, N.A., Tech. Phys., 2005, vol. 50, no. 12, pp. 1535–1543.

    Article  Google Scholar 

  41. 41.

    Parkhutik, V., Electrochim. Acta, 2000, vol. 45, pp. 3249–3254.

    Article  Google Scholar 

  42. 42.

    Langa, S., Carstensen, J., Tiginyanu, I.M., Christophersen, M., and Foll, H., Electrochem. Solid-State Lett., 2001, vol. 4, no. 6, pp. G50–G52.

    Article  Google Scholar 

  43. 43.

    Lee, W., Kim, J.-G., and Gosele, U., Adv. Funct. Mater., 2010, vol. 20, no. 10, pp. 21–27.

    Article  Google Scholar 

  44. 44.

    Belov, A.N., Processes of formation of nanostructures based on porous anodic metal oxides, Extended Abstracts of Doctoral Sci. (Eng.) Dissertation, National Research University of Electronic Technology, Moscow, 2012.

    Google Scholar 

  45. 45.

    Larin, V.I., Khobotova, E.B., Datsenko, V.V., Egorova, L.M., and Dobriyan M.A., Elektrokhimicheskoe rastvorenie medi i ee splavov v rastvorakh razlichnogo sostava i sozdanie tekhnologicheskikh protsessov regeneratsii otrabotannykh travil’nykh rastvorov (Electrochemical Dissolving of Copper and Copper Alloys in Solutions with Various Composition and Creation of Technological Processes of Regeneration of Spent Etchants), Kharkiv: Kharkiv National University, 2009.

    Google Scholar 

  46. 46.

    Nevskii, O.I., Burkov, V.N., Grishina, E.P., Gavrilova, E.L., Balmasov, A.V., Noskov, A.V., and Dontsov, M.G., Elektrokhimicheskaya razmernaya obrabotka metallov i splavov. problemy teorii i praktiki (Electrochemical Dimensional Processing of Metals and Alloys. Problems of Theory and Practice), Ivanovo: Ivanovo State University of Chemistry and Technology, 2006.

    Google Scholar 

  47. 47.

    Buchin, E.Yu. and Prokaznikov, A.V., Phys. Low-Dim. Struct., 2003, vols. 7/8, pp. 69–76.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Prokaznikov.

Additional information

Original Russian Text © N.A. Arzhanova, M.A. Prokaznikov, A.V. Prokaznikov, 2014, published in Mikroelektronika, 2014, Vol. 43, No. 6, pp. 441–455.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arzhanova, N.A., Prokaznikov, M.A. & Prokaznikov, A.V. Self-organization process under electrolytic formation of nanostructures in silicon-based semi-conducting systems. Russ Microelectron 43, 413–426 (2014). https://doi.org/10.1134/S106373971406002X

Download citation

Keywords

  • Charge Exchange
  • Porous Silicon
  • Dielectric Layer
  • Dynamic Variable
  • Pore Formation