Skip to main content

High-mode wave reliefs in a spatially nonlocal erosion model

This is a preview of subscription content, access via your institution.


  1. 1.

    Rudyi, A.S. and Bachurin, V.I., Spatially nonlocal model of surface erosion by ion bombardment, Izv. Ross. Akad. Nauk, Ser. Fiz., 2008, vol. 72, no. 5, pp. 624–629.

    Google Scholar 

  2. 2.

    Rudyi, A.S., Kulikov, A.N., and Metlitskaya, A.V., Simulation of formation of nanostructures during the surface sputtering by ion bombardment, Russ. Microelectron., 2011, vol. 40, no. 2, pp. 98–107.

    Article  Google Scholar 

  3. 3.

    Kulikov, D.A. and Rudyi, A.S., Formation of wavy nanorelief during the surface sputtering by ion bombardment, Modelir. Analiz Inform. Sist., 2012, vol. 19, no. 5, pp. 35–44.

    Google Scholar 

  4. 4.

    Kulikov, D.A., Nonuniform dissipative structures in a problem on the formation of the nanorelief, Dinamich. Sistemy, 2012, vol. 2, nos. 3–4, pp. 259–272.

    Google Scholar 

  5. 5.

    Bradley, R.M. and Harper, J.M.F., Theory of ripple topography induced by ion bombardment, J. Vac. Sci. Technol. A, 1988, vol. 6, pp. 2390–2395.

    Article  Google Scholar 

  6. 6.

    Sigmund, P., A mechanism of surface microroughening by ion bombardment, J. Mater. Sci., 1973, vol. 8, pp. 1545–1553.

    Article  Google Scholar 

  7. 7.

    Kudryashov, N.A., Ryabov, P.N., and Strikhanov, M.N., Numerical modeling of the formation of nanostructures on the surface of flat substrates during ion bombardment, Yadern. Fiz. Inzh., 2010, vol. 1, no. 2, pp. 151–158.

    Google Scholar 

  8. 8.

    Metlitskaya, A.V., Kulikov, A.N., and Rudy, A.S., Formation of the wave nanorelief at surface erosion by ion bombardment within the Bradley-Harper model, Russ. Microelectron., 2013, vol. 42, no. 4, pp. 238–245.

    Article  Google Scholar 

  9. 9.

    Marsden, J.E. and McCracken, M., The Hopf Bifurcation and Its Applications, New York-Heidelberg-Berlin: Springer, 1976.

    Book  MATH  Google Scholar 

  10. 10.

    Kulikov, A.N., On smooth invariant varieties of a semigroup of nonlinear operators in the Banach space, in Issledovanie po ustoichivosti i teorii kolebanii (Investigation into the Stability and Theory of Oscillations), Yaroslavl: Yaroslavl State Univ., pp. 114–129.

  11. 11.

    Mishchenko, E.F., Sadovnichii, V.A., Kolesov, A.Yu., and Rozov, N.Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei (Autowave Processes in Nonlinear Media with Diffusion), Moscow: Fizmatlit, 2005.

    Google Scholar 

  12. 12.

    Kulikov, A.N. and Kulikov, D.A., Formation of wavy nanostructures on the surface of flat substrates during ion bombardment, Zh. Vychisl. Mat. Mat. Fiz., 2012, vol. 52, no. 5, pp. 930–945.

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Kulikov, A.N., Kulikov, D.A., and Rudyi, A.S., Bifurcations of nanostructures under the effect of ion bombardment, Vestn. Udmurt. Univ., 2011, no. 4, pp. 86–99.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Rudyi.

Additional information

Original Russian Text © A.S. Rudyi, A.N. Kulikov, D.A. Kulikov, A.V. Metlitskaya, 2014, published in Mikroelektronika, 2014, Vol. 43, No. 4, pp. 282–288.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rudyi, A.S., Kulikov, A.N., Kulikov, D.A. et al. High-mode wave reliefs in a spatially nonlocal erosion model. Russ Microelectron 43, 277–283 (2014).

Download citation


  • Normal Form
  • Boundary Problem
  • RUSSIAN Microelectronics
  • Linear Differential Operator
  • Nonlocal Model