Russian Microelectronics

, Volume 43, Issue 4, pp 277–283 | Cite as

High-mode wave reliefs in a spatially nonlocal erosion model

  • A. S. RudyiEmail author
  • A. N. Kulikov
  • D. A. Kulikov
  • A. V. Metlitskaya


Normal Form Boundary Problem RUSSIAN Microelectronics Linear Differential Operator Nonlocal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rudyi, A.S. and Bachurin, V.I., Spatially nonlocal model of surface erosion by ion bombardment, Izv. Ross. Akad. Nauk, Ser. Fiz., 2008, vol. 72, no. 5, pp. 624–629.Google Scholar
  2. 2.
    Rudyi, A.S., Kulikov, A.N., and Metlitskaya, A.V., Simulation of formation of nanostructures during the surface sputtering by ion bombardment, Russ. Microelectron., 2011, vol. 40, no. 2, pp. 98–107.CrossRefGoogle Scholar
  3. 3.
    Kulikov, D.A. and Rudyi, A.S., Formation of wavy nanorelief during the surface sputtering by ion bombardment, Modelir. Analiz Inform. Sist., 2012, vol. 19, no. 5, pp. 35–44.Google Scholar
  4. 4.
    Kulikov, D.A., Nonuniform dissipative structures in a problem on the formation of the nanorelief, Dinamich. Sistemy, 2012, vol. 2, nos. 3–4, pp. 259–272.Google Scholar
  5. 5.
    Bradley, R.M. and Harper, J.M.F., Theory of ripple topography induced by ion bombardment, J. Vac. Sci. Technol. A, 1988, vol. 6, pp. 2390–2395.CrossRefGoogle Scholar
  6. 6.
    Sigmund, P., A mechanism of surface microroughening by ion bombardment, J. Mater. Sci., 1973, vol. 8, pp. 1545–1553.CrossRefGoogle Scholar
  7. 7.
    Kudryashov, N.A., Ryabov, P.N., and Strikhanov, M.N., Numerical modeling of the formation of nanostructures on the surface of flat substrates during ion bombardment, Yadern. Fiz. Inzh., 2010, vol. 1, no. 2, pp. 151–158.Google Scholar
  8. 8.
    Metlitskaya, A.V., Kulikov, A.N., and Rudy, A.S., Formation of the wave nanorelief at surface erosion by ion bombardment within the Bradley-Harper model, Russ. Microelectron., 2013, vol. 42, no. 4, pp. 238–245.CrossRefGoogle Scholar
  9. 9.
    Marsden, J.E. and McCracken, M., The Hopf Bifurcation and Its Applications, New York-Heidelberg-Berlin: Springer, 1976.CrossRefzbMATHGoogle Scholar
  10. 10.
    Kulikov, A.N., On smooth invariant varieties of a semigroup of nonlinear operators in the Banach space, in Issledovanie po ustoichivosti i teorii kolebanii (Investigation into the Stability and Theory of Oscillations), Yaroslavl: Yaroslavl State Univ., pp. 114–129.Google Scholar
  11. 11.
    Mishchenko, E.F., Sadovnichii, V.A., Kolesov, A.Yu., and Rozov, N.Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei (Autowave Processes in Nonlinear Media with Diffusion), Moscow: Fizmatlit, 2005.Google Scholar
  12. 12.
    Kulikov, A.N. and Kulikov, D.A., Formation of wavy nanostructures on the surface of flat substrates during ion bombardment, Zh. Vychisl. Mat. Mat. Fiz., 2012, vol. 52, no. 5, pp. 930–945.zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kulikov, A.N., Kulikov, D.A., and Rudyi, A.S., Bifurcations of nanostructures under the effect of ion bombardment, Vestn. Udmurt. Univ., 2011, no. 4, pp. 86–99.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. S. Rudyi
    • 1
    Email author
  • A. N. Kulikov
    • 1
  • D. A. Kulikov
    • 1
  • A. V. Metlitskaya
    • 1
  1. 1.Yaroslavl State University N.A. DemidovYaroslavlRussia

Personalised recommendations