Russian Microelectronics

, Volume 43, Issue 4, pp 284–298 | Cite as

Investigation into the diffusion of boron, phosphorus, and arsenic in silicon during annealing in a nonisothermal reactor

  • V. I. RudakovEmail author
  • V. V. Ovcharov
  • V. F. Lukichev
  • Yu. I. Denisenko


The influence of the temperature gradient on the diffusion of boron, phosphorus, and arsenic during annealing of silicon in a nonisothermal lamp reactor in the second and minute ranges is investigated experimentally and theoretically. Parameters of the thermodiffusion process are determined: for the boron diffusion in the second range, the effective diffusivity D eff ∼ 10−12 cm2/s and the effective measured heat of transport Q meff * ∼ 103–104 eV. The results are interpreted based on the equations of nonequilibrium thermodynamics.


Arsenic Boron Impurity Atom Rapid Thermal Annealing RUSSIAN Microelectronics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singh, R., Rapid isothermal processing, J. Appl. Phys., 1988, vol. 63, no. 8, p. R59.CrossRefGoogle Scholar
  2. 2.
    Kireev, V.Yu. and Tsimbalov, A.S., Rapid thermal processing: a new step forward in microelectronics technologies, Russ. Microelectron., 2001, vol. 30. no. 4, p. 266.Google Scholar
  3. 3.
    Fair, R.B., Wortman, J.J., and Liu, J., Modeling rapid thermal diffusion of arsenic and boron in silicon, J. Electrochem. Soc., 1984, vol. 131, no. 10, p. 2387.CrossRefGoogle Scholar
  4. 4.
    Fair, R.B. and Li, S., Photonic effects in the deactivation of ion implanted arsenic, J. Appl. Phys., 1998, vol. 83, no. 8, p. 4081.CrossRefGoogle Scholar
  5. 5.
    Sisianu, S.T., Sisianu, T.S., and Railean, S.K., Shallow p-n junctions formed in silicon using pulsed photon annealing, Semiconductors, 2002, vol. 36, no. 5, p. 581.CrossRefGoogle Scholar
  6. 6.
    Jäger, H.U., Feudel, T., and Ulbricht, S., Modeling of defect-phosphorus pair diffusion in phosphorusimplanted silicon, Phys. Status Solidi, 1989, vol. 116, p. 571.CrossRefGoogle Scholar
  7. 7.
    Jäger, H.U., Point defect-based modeling of diffusion and electrical activation of ion implanted boron in crystalline silicon, J. Appl. Phys., 1995, vol. 78, no. 1, p. 176.CrossRefGoogle Scholar
  8. 8.
    Agarwal, A., Eagleasham, D.H., Gassmann, H.J., et al., Lecture Tu-1430, modeling enhanced diffusion of implanted dopants,
  9. 9.
    Holland, O.W., New mechanism for diffusion of ionimplanted boron in Si at high concentration, Appl. Phys. Lett., 1989, vol. 54, no. 9, p. 798.CrossRefGoogle Scholar
  10. 10.
    Manu, L. and Evans, A.G.R., Phosphorus diffusion in silicon during rapid thermal annealing, Semicond. Sci. Technol., 1989, no. 4, p. 711.Google Scholar
  11. 11.
    Rudakov, V.I., Bashmakov, A.V., and Ovcharov, V.V., Modeling the process of impurity removal from semiconductor wafers in inhomogeneous temperature field, Pis’ma Tech. Phys. Lett., 2004, vol. 30, no. 3, p. 197.CrossRefGoogle Scholar
  12. 12.
    Rudakov, V.I. and Ovcharov, V.V., Influence of thermodiffusion parameters on the concentration profiles, Proc. SPIE-Int. Soc. Opt. Eng., 2005, vol. 6260, p. 217.Google Scholar
  13. 13.
    Rudakov, V.I., Nonisothermal Processes in Silicon-Based Systems, Doctoral (Phys.-Math.) Dissertation, Yaroslavl, 1998.Google Scholar
  14. 14.
    Borgardt, N.I., Plikat, B., Seibt, M., and Shröter, V., The effect of the translational symmetry of crystalline silicon on the structure of amorphous germanium in the interfacial region, Cryst. Rep., 2004, vol. 49, no. 2, p. 225.CrossRefGoogle Scholar
  15. 15.
    Borgardt, N.I., Plikat, B., Schröter, W., and Seibt, M., Atomic structure of the interface between silicon (111) and amorphous germanium, Phys. Rev. B, 2004, vol. 70, no. 12, p. 195307.CrossRefGoogle Scholar
  16. 16.
    Baeri, P., Campisano, S.U., Foti, G., and Rimini, E., A melting model for pulsed-laser annealing of implanted semiconductors, Appl. Phys. Lett., 1978, vol. 33, p. 137.CrossRefGoogle Scholar
  17. 17.
    Mochalov, B.V. and Rudakov, V.I., A setup for the temperature-gradient heat treatment of semiconductor wafers, Instrum. Exp. Tech+., 1996, vol. 39, no. 2, p. 302.Google Scholar
  18. 18.
    Ishikava, Y., Yamauchi, K., and Nakamichi, I., The enhanced of low-concentration phosphorus, arsenic and boron in silicon during IR-heating, Jpn. J. Appl. Phys., 1989, vol. 28, no. 8, p. L1319.CrossRefGoogle Scholar
  19. 19.
    Kravchenko, V.A., Starkov, V.V., Abrosimov, N.V., and Abrosimova, V.N., Diffusion doping of silicon with boron and phosphorus in conditions of rapid thermal annealing, Elektron. Tekhn., Ser. Materialy, 1989, no. 4, vyp. 241, p. 20.Google Scholar
  20. 20.
    Kapustin, Yu.A., Kolokol’nikov, B.M., and Sveshnikov, A.A., Au-doping of silicon during pulsed photonic annealing, Elektron. Tekhn., Ser. Materialy., 1989, no. 4, vyp. 241, p. 24.Google Scholar
  21. 21.
    Kim, Y.M., Lo, G.Q., and Kwong, D.L., Anomalous transient diffusion of boron implanted into preamorphized Si during rapid thermal annealing, Appl. Phys. Lett., 1989, vol. 55, no. 22, p. 2316.CrossRefGoogle Scholar
  22. 22.
    Kim, Y.M., Lo, G.Q., Kinoshita, H., et al., Roles of extended defect evolution on the anomalous diffusion of boron in Si during rapid thermal annealing, J. Electrochem. Soc., 1991, vol. 138, no. 4, p. 1122.CrossRefGoogle Scholar
  23. 23.
    Michel, A.E., Rapid annealing and anomalous diffusion of ion implanted boron into silicon, Appl. Phys. Lett., 1987, vol. 50, p. 416.CrossRefGoogle Scholar
  24. 24.
    Kol’dyaev, V.I., Neizvestnyi, I.G., and Novikov, A.Yu., Relaxation inetics of a transient boron diffusion coefficient at annealing of implantation-induced defects, Russian Mikroelektronika, 1995, vol. 24, no. 2, p. 84.Google Scholar
  25. 25.
    Tsai, J.C.C., Schimmel, D.G., Fair, R.B., and Maszara, W., Point defect generation during phosphorus diffusion in silicon. I. Concentration above solid solubility, J. Electrochem. Soc., 1987, vol. 134, no. 6, p. 1508.CrossRefGoogle Scholar
  26. 26.
    Tsai, J.C.C., Schimmel, D.G., Ahrens, R.E., and Fair, R.B., Point defect generation during phosphorus diffusion in silicon. II. Concentration below solid solubility, ion-implanted phosphorus, J. Electrochem. Soc., 1987, vol. 134, no. 9, p. 2348.CrossRefGoogle Scholar
  27. 27.
    Koleshko, V.M. and Kovalevskii, A.A., Polikristallicheskie plenki poluprovodnikov v mikroelektronike (Polycrystalline Semiconductor Films in Microelectronics), Minsk: Nauka Tekhnika, 1978.Google Scholar
  28. 28.
    Rudakov, V.I. and Ovcharov, V.V., Mathematical description of the diffusion in a temperature field and measuring the heat of transport, Int. J. Heat Mass Transfer., 2002, vol. 45, p. 743.CrossRefzbMATHGoogle Scholar
  29. 29.
    Ovcharov, V.V., Features of concentration profiles during the nonisothermal diffusion in semiconductors, Doctoral (Phys.-Math.) Dissertation, Yaroslavl, 2006.Google Scholar
  30. 30.
    Rudakov, V.I. and Ovcharov, V.V., Evolution of dopant concentration from a Gaussian profile in a nonuniform temperature field, Russ. Microelectron., 2002, vol. 31, no. 2, p. 97.CrossRefGoogle Scholar
  31. 31.
    Sze, S.M., VLSI Technology, New-York, McGraw-Hill, 1986, 2nd ed.Google Scholar
  32. 32.
    Lowndes, D.H., Wood, R.F., and Narayan, J., Pulsedlaser melting of amorphous silicon: time resolved measurements and model calculations, Phys. Rev. Lett., 1984, vol. 52, no. 7, p. 561.CrossRefGoogle Scholar
  33. 33.
    Wood, R.F. and Gilles, G.E., Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting, Phys. Rev. B, 1981, vol. 23, no. 6, p. 2923.CrossRefGoogle Scholar
  34. 34.
    Raspylenie tverdykh tel ionnoi bombardirovkoi (Sputtering of Solids by Ion Bombardment), Berish, R., Ed., Moscow: Mir, 1984.Google Scholar
  35. 35.
    Elektronnomikroskopicheskie izobrazheniya dislokatsii i defektov upakovki. Spravochnoe rukovodstvo (Electron-Microscopy Images of Dislocations and Stacking Faults), Kosevich, V.M. and Palatnik, L.S., Eds., Moscow: Nauka, 1976.Google Scholar
  36. 36.
    Komarov, F.F., Novikov, A.P., Solov’ev, V.S., and Shiryaev, S.Yu., Defekty struktury v ionno-implantirovannom kremnii (Structural Defects in Ion-Implanted Silicon), Minsk: Universitetskoe, 1990.Google Scholar
  37. 37.
    Chelyadinskii, A.R. and Komarov, F.F., Defect-impurity engineering in implanted silicon, Phys. Usp., 2003, vol. 46, no. 8, p. 789.CrossRefGoogle Scholar
  38. 38.
    Shklovskii, V.A., Thermal instability of the phase transformation front during the decomposition of “frozen” metastable states, Zh. Eksp. Teor. Fiz., 1982, vol. 82, no. 2, p. 536.Google Scholar
  39. 39.
    Oriani, R.A., Thermomigration in solid metals, J. Phys. Chem. Solids, 1969, vol. 30, p. 339.CrossRefGoogle Scholar
  40. 40.
    Stark, J.P., Solid state diffusion. RE Krieger Publishing Company, 1983.Google Scholar
  41. 41.
    de Groot, S.R., Thermodynamics of Irreversible Processes, Amsterdam: North-Holland Publ. Co., 1952.Google Scholar
  42. 42.
    Geguzin, Ya.E., Diffuzionnaya zona (Diffusion Zone), Moscow: Nauka, 1979.Google Scholar
  43. 43.
    Kandepudi D., Prigozhin I. Modern Thermodynamics. From Heat Engines to Dissipative Structures, New-York: John Wiley&Sons, 1999.Google Scholar
  44. 44.
    Manning, J., Diffusion Kinetics for Atoms in Crystals, New York, van Nostrand, 1968.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. I. Rudakov
    • 1
    Email author
  • V. V. Ovcharov
    • 1
  • V. F. Lukichev
    • 2
  • Yu. I. Denisenko
    • 1
  1. 1.Yaroslavl Branch, Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia
  2. 2.Physical-Technical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations