Advertisement

Quantum error correction in silicon charge qubits

Abstract

The interaction of the quantum register with a noisy environment that leads to phase and bit errors is considered. Modeling of 5-qubit and 9-qubit error-correction algorithms for various environments is performed. It is shown that the use of the quantum correction leads to a quadratic decrease in the error probability. The efficiency of applying the 5-qubit algorithm of error correction for a silicon double-dot qubit is shown.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    Brandt, H.E., Qubit Devices and the Issue of Quantum Decoherence, Prog. Quantum Electron., 1999, vol. 22, p. 257.

  2. 2.

    Divincenzo, D.P., The Physical Implementation of Quantum Computation, Fortschr. Phys., 2000, vol. 10, p. 771.

  3. 3.

    Haar, D.T., Theory and Applications of the Density Matrix, Rep. Prog. Phys., 1961, vol. 24, p. 304.

  4. 4.

    Blum, K., Density Matrix Theory and Applications, Springer, 2011, 3rd ed.

  5. 5.

    Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ., 2004.

  6. 6.

    Fedichkin, L., Polynomial Procedure of Avoiding Multiqubit Errors Arising Due to Qubit-Qubit Interaction, Quantum Comput. Comput., 2000, vol. 1, p. 84.

  7. 7.

    Ozhigov, Y. and Fedichkin, L., A Quantum Computer with Fixed Interaction Is Universal, JETP Lett., 2003, vol. 77, p. 328.

  8. 8.

    Steane, A.M., Error Correcting Codes in Quantum Theory, Phys. Rev. Lett., 1996, vol. 77, p. 793.

  9. 9.

    Ekert, A. and Macchiavello, C., Quantum Error Correction for Communication, Phys. Rev. Lett., 1996, vol. 77, p. 2585.

  10. 10.

    Gottesman, D., Stabilizer Codes and Quantum Error Correction, LANL E-print, 1997. ArXiv:quant-ph/9705052.

  11. 11.

    Hirvensalo, M., Quantum Error Correction, Citeseer, 1998.

  12. 12.

    Knill, E., Laflamme, R., and Viola, L., Theory of Quantum Error Correction for General Noise, Phys. Rev. Lett., 2000, vol. 84, p. 2525.

  13. 13.

    Gottesman, D., Fault-Tolerant Quantum Computation, LANL E-print, 2000. ArXiv:quant-ph/0004072.

  14. 14.

    Knill, E., Laflamme, R., Ashikhmin, A., Barnum, H., Viola, L., and Zurek, W.H., Introduction to Quantum Error Correction, LANL E-print, 2002. ArXiv:quantph/0207170.

  15. 15.

    Gottesman, D., Quantum Error Correction and Fault-Tolerance, LANL E-print, 2005. ArXiv:quant-ph/0507174.

  16. 16.

    Shor, P.W., Scheme for Reducing Decoherence in Quantum Computer Memory, Phys. Rev. A, 1995, vol. 52, p. 2493.

  17. 17.

    DiVincenzo, D.P. and Shor, P.W., Phys. Rev. Lett., 1996, vol. 77, p. 3260.

  18. 18.

    Holevo, A.S., Probabilistic and Statistical Aspects of Quantum Theory, Springer, 2011.

  19. 19.

    Amosov, G.G. and Holevo, A.S., On the Multiplicativity Conjecture for Quantum Channels, LANL E-print, 2002. ArXiv:math-ph/0103015.

  20. 20.

    Preskill, J., Lecture Notes for Physics 229: Quantum Information and Computations, Calif. Inst. Technol., 1998.

  21. 21.

    Choi, M., Completely Positive Linear Maps on Complex Matrices, Linear Algebra Appl., 1975, vol. 10, p. 285.

  22. 22.

    Kraus, K., States, Effects, and Operations. Lecture Notes in Physics, vol. 190, Springer, 1983.

  23. 23.

    Fedichkin, L., Fedorov, A., and Privman, V., Robustness of Multiqubit Entanglement, Proc. SPIE—Int. Soc. Opt. Eng., 2003, vol. 5105, p. 243.

  24. 24.

    Li, C.-K., Nakahara, M., Poon, Y.-T., Sze, N.-S., and Tomita, H., Recovery in Quantum Error Correction for General Noise without Measurement, LANL E-print, 2011. ArXiv:quant-ph/1102.1618.

  25. 25.

    Tomita, H. and Nakahara, M., Unitary Quantum Error Correction without Error Detection, LANL E-print, 2011. ArXiv:quant-ph/1101.0413.

  26. 26.

    Fedichkin, L., Yanchenko, M., and Valiev, K.A., Coherent Charge Qubits Based on GaAs Quantum Dots with a Built-In Barrier, Nanotecnology, 2000, vol. 11, p. 387.

  27. 27.

    Fedichkin, L. and Fedorov, A., Error Rate of a Charge Qubit Coupled to an Acoustic Phonon Reservoir, Phys. Rev. A, 2004, vol. 69, p. 032311.

  28. 28.

    Fedichkin, L. and Fedorov, A., Study of Temperature Dependence of Electron-Phonon Relaxation and Dephasing in Semiconductor Double-Dot Nanostructures, IEEE Trans. Nanotechn., 2005, vol. 4, p. 65.

Download references

Author information

Correspondence to A. A. Melnikov.

Additional information

Original Russian Text © A.A. Melnikov, L.E. Fedichkin, 2013, published in Mikroelektronika, 2013, Vol. 42, No. 3, pp. 186–193.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melnikov, A.A., Fedichkin, L.E. Quantum error correction in silicon charge qubits. Russ Microelectron 42, 148–154 (2013) doi:10.1134/S1063739713020078

Download citation

Keywords

  • Density Matrix
  • Error Correction
  • Phase Error
  • RUSSIAN Microelectronics
  • Quantum Operation