Russian Microelectronics

, Volume 42, Issue 3, pp 148–154 | Cite as

Quantum error correction in silicon charge qubits



The interaction of the quantum register with a noisy environment that leads to phase and bit errors is considered. Modeling of 5-qubit and 9-qubit error-correction algorithms for various environments is performed. It is shown that the use of the quantum correction leads to a quadratic decrease in the error probability. The efficiency of applying the 5-qubit algorithm of error correction for a silicon double-dot qubit is shown.


Density Matrix Error Correction Phase Error RUSSIAN Microelectronics Quantum Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, H.E., Qubit Devices and the Issue of Quantum Decoherence, Prog. Quantum Electron., 1999, vol. 22, p. 257.CrossRefGoogle Scholar
  2. 2.
    Divincenzo, D.P., The Physical Implementation of Quantum Computation, Fortschr. Phys., 2000, vol. 10, p. 771.CrossRefGoogle Scholar
  3. 3.
    Haar, D.T., Theory and Applications of the Density Matrix, Rep. Prog. Phys., 1961, vol. 24, p. 304.CrossRefGoogle Scholar
  4. 4.
    Blum, K., Density Matrix Theory and Applications, Springer, 2011, 3rd ed.Google Scholar
  5. 5.
    Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ., 2004.Google Scholar
  6. 6.
    Fedichkin, L., Polynomial Procedure of Avoiding Multiqubit Errors Arising Due to Qubit-Qubit Interaction, Quantum Comput. Comput., 2000, vol. 1, p. 84.Google Scholar
  7. 7.
    Ozhigov, Y. and Fedichkin, L., A Quantum Computer with Fixed Interaction Is Universal, JETP Lett., 2003, vol. 77, p. 328.CrossRefGoogle Scholar
  8. 8.
    Steane, A.M., Error Correcting Codes in Quantum Theory, Phys. Rev. Lett., 1996, vol. 77, p. 793.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ekert, A. and Macchiavello, C., Quantum Error Correction for Communication, Phys. Rev. Lett., 1996, vol. 77, p. 2585.CrossRefGoogle Scholar
  10. 10.
    Gottesman, D., Stabilizer Codes and Quantum Error Correction, LANL E-print, 1997. ArXiv:quant-ph/9705052.Google Scholar
  11. 11.
    Hirvensalo, M., Quantum Error Correction, Citeseer, 1998.Google Scholar
  12. 12.
    Knill, E., Laflamme, R., and Viola, L., Theory of Quantum Error Correction for General Noise, Phys. Rev. Lett., 2000, vol. 84, p. 2525.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gottesman, D., Fault-Tolerant Quantum Computation, LANL E-print, 2000. ArXiv:quant-ph/0004072.Google Scholar
  14. 14.
    Knill, E., Laflamme, R., Ashikhmin, A., Barnum, H., Viola, L., and Zurek, W.H., Introduction to Quantum Error Correction, LANL E-print, 2002. ArXiv:quantph/0207170.Google Scholar
  15. 15.
    Gottesman, D., Quantum Error Correction and Fault-Tolerance, LANL E-print, 2005. ArXiv:quant-ph/0507174.Google Scholar
  16. 16.
    Shor, P.W., Scheme for Reducing Decoherence in Quantum Computer Memory, Phys. Rev. A, 1995, vol. 52, p. 2493.CrossRefGoogle Scholar
  17. 17.
    DiVincenzo, D.P. and Shor, P.W., Phys. Rev. Lett., 1996, vol. 77, p. 3260.CrossRefGoogle Scholar
  18. 18.
    Holevo, A.S., Probabilistic and Statistical Aspects of Quantum Theory, Springer, 2011.MATHCrossRefGoogle Scholar
  19. 19.
    Amosov, G.G. and Holevo, A.S., On the Multiplicativity Conjecture for Quantum Channels, LANL E-print, 2002. ArXiv:math-ph/0103015.Google Scholar
  20. 20.
    Preskill, J., Lecture Notes for Physics 229: Quantum Information and Computations, Calif. Inst. Technol., 1998.Google Scholar
  21. 21.
    Choi, M., Completely Positive Linear Maps on Complex Matrices, Linear Algebra Appl., 1975, vol. 10, p. 285.MATHCrossRefGoogle Scholar
  22. 22.
    Kraus, K., States, Effects, and Operations. Lecture Notes in Physics, vol. 190, Springer, 1983.Google Scholar
  23. 23.
    Fedichkin, L., Fedorov, A., and Privman, V., Robustness of Multiqubit Entanglement, Proc. SPIE—Int. Soc. Opt. Eng., 2003, vol. 5105, p. 243.Google Scholar
  24. 24.
    Li, C.-K., Nakahara, M., Poon, Y.-T., Sze, N.-S., and Tomita, H., Recovery in Quantum Error Correction for General Noise without Measurement, LANL E-print, 2011. ArXiv:quant-ph/1102.1618.Google Scholar
  25. 25.
    Tomita, H. and Nakahara, M., Unitary Quantum Error Correction without Error Detection, LANL E-print, 2011. ArXiv:quant-ph/1101.0413.Google Scholar
  26. 26.
    Fedichkin, L., Yanchenko, M., and Valiev, K.A., Coherent Charge Qubits Based on GaAs Quantum Dots with a Built-In Barrier, Nanotecnology, 2000, vol. 11, p. 387.CrossRefGoogle Scholar
  27. 27.
    Fedichkin, L. and Fedorov, A., Error Rate of a Charge Qubit Coupled to an Acoustic Phonon Reservoir, Phys. Rev. A, 2004, vol. 69, p. 032311.CrossRefGoogle Scholar
  28. 28.
    Fedichkin, L. and Fedorov, A., Study of Temperature Dependence of Electron-Phonon Relaxation and Dephasing in Semiconductor Double-Dot Nanostructures, IEEE Trans. Nanotechn., 2005, vol. 4, p. 65.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.NIXMoscowRussia

Personalised recommendations