Skip to main content
Log in

Aligned carbon tubes synthesized using porous aluminum oxide

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The fabrication of a matrix of highly ordered vertically aligned carbon tubes synthesized using a porous anodic aluminum oxide template is considered. The effect of synthesis regimes on the order and topological characteristics of carbon tubes is investigated. The effect of structural and morphological changes in the porous aluminum oxide which take place during the high-temperature synthesis of carbon tubes on the origin and growth of the latter is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakov, E.G., Ross. Khim. Zh., 2004, vol. 48, no. 5, p. 12.

    Google Scholar 

  2. Terrones, M., et al., Nature, 1997, vol. 388, p. 52.

    Article  Google Scholar 

  3. Ren, Z.F., et al., Science, 1998, vol. 282, p. 1105.

    Article  Google Scholar 

  4. Bower, C., et al., Appl. Phys. Lett., 2000, vol. 77, p. 830.

    Article  Google Scholar 

  5. Mauger, M., et al., Appl. Phys. Lett., 2004, vol. 85, p. 305.

    Article  Google Scholar 

  6. Satishkumar, B.C., Govindaraj, A., and Rao, C.N.R., Chem. Phys. Lett., 1999, vol. 307, p. 158.

    Article  Google Scholar 

  7. Lee, C.J., Lyu, S.C., Kim, H.-W., et al., Chem. Phys. Lett., 2002, vol. 359, p. 109.

    Article  Google Scholar 

  8. Kim, N.S., Lee, Y.T., Park, J., et al., J. Phys. Chem. B, vol. 107, p. 9249.

  9. Bai, S., Li, F., et al., Chem. Phys. Lett., 2003, vol. 373, p. 83.

    Article  Google Scholar 

  10. Grobert, N., Terrones, M., Trasobares, S., et al., Appl. Phys. A, 2000, vol. 70, p. 175.

    Article  Google Scholar 

  11. Fowlkes, J.D., Melechko, A.V., Klein, K.L., et al., Carbon, 2006, vol. 44, p. 1503.

    Article  Google Scholar 

  12. Zhang, X.Y., Zhang, L.D., Zheng, G.H., and Zhao, L.X., J. Crystal Growth, 2001, vol. 223, p. 306.

    Article  Google Scholar 

  13. Miao, J.Y., Cai, Y., Chan, Y.F., Sheng, P., and Wang, N., J. Phys. Chem., 2006, vol. 110, no. 5, p. 2080.

    Google Scholar 

  14. Yu, K., et al., Mater. Lett., 2007, vol. 61, p. 97.

    Article  Google Scholar 

  15. Jeong, S.H. and Lee, K.H., Synth. Met., 2003, vol. 139, p. 385.

    Article  Google Scholar 

  16. Hu, W.K., Yuan, L.M., Chen, Z., et al., J. Nanosci. Nanotechnol., 2002, vol. 2, p. 203.

    Article  MATH  Google Scholar 

  17. Gao, H., Mu, C., Wang, F., et al., J. Appl. Phys., 2003, vol. 93, p. 5602.

    Article  Google Scholar 

  18. Yu, W.J., Cho, Y.S., Choi, G.S., and Kim, D., Nanotechnology, 2005, vol. 16, p. 291.

    Article  Google Scholar 

  19. Vorob’eva, A.I., Shulitskii, B.G., and Prudnikova, E.L., Nanoi Mikrosistemnaya Tekhnika, 2007, vol. 86, no. 9, p. 39.

    Google Scholar 

  20. Livshutz, A.I., Vacuum, 1979, vol. 29, no. 3, p. 103.

    Article  Google Scholar 

  21. Sokol, V.A., Elektrokhimicheskaya tekhnologiya gibridnykh integral’nykh mikroskhem (Electrochemical Technology of Hybrid Integrated Microcircuits), Minsk: Bestprint, 2004.

    Google Scholar 

  22. Labunov, V.A. and Shulitskii, B.G., Nonrestricted Large Area of Vertically Aligned Carbon Nanotubes, Trudy III Rossiisko-Yaponskogo seminara “Oborudovanie i tekhnologii dlya proizvodstva komponentov tverdotel’noi elektroniki i nanomaterialov”, MISiS-ULVAC Inc., Moscow, 2005, pp. 260.

    Google Scholar 

  23. Davydov, D.N., Sattari, P.A., Almawlawi, D., et al., J. Appl. Phys., 1999, vol. 86, p. 3983.

    Article  Google Scholar 

  24. Martin, C.R., Science, 1994, vol. 266, p. 1961.

    Article  Google Scholar 

  25. Yin, A., Li, J., et al., Appl. Phys. Lett., 2001, vol. 9, no. 7, p. 1039.

    Article  Google Scholar 

  26. Das, B. and McGinnis, S.P., Appl. Phys. A, 2000, vol. 71, p. 681.

    Article  Google Scholar 

  27. Tret’yakov, Yu.D., et al., Usp. Khim., 2004, vol. 73, no. 9, p. 974.

    Google Scholar 

  28. Pan, X., et al., Nature Materials, 2007, vol. 6, p. 507.

    Article  Google Scholar 

  29. Persiantseva, N.M., Popovicheva, O.B., Starik, A.M., et al., Pis’ma Zh. Tekh. Fiz., 2000, vol. 26, no. 18, p. 50.

    Google Scholar 

  30. Apresyan, L.A., Vlasov, D.V., Vlasova, T.V., et al., ZhTF, 2006, vol. 76, no. 12, p. 140.

    Google Scholar 

  31. Feng, S.Q., Yu, D.P., Hu, G., et al., J. Phys. Chem. Sol., 1997, vol. 58, p. 1887.

    Article  Google Scholar 

  32. Im, W.S., Cho, Y.S., Choi, G.S., et al., Diamond Relat. Mater., 2004, vol. 13, p. 1214.

    Article  Google Scholar 

  33. D’yachkov, P.N., Uglerodnye nanotrubki: stroenie, svoistva, primeneniya (Carbon Nanotubes: Structure, Properties, and Applications), Moscow: Binom. Laboratoriya znanii, 2006.

    Google Scholar 

  34. Bogoyavlenskii, A.F. and Kotova, E.G., Zh. Fiz. Khim., 1969, vol. 43, no. 10, p. 2449.

    Google Scholar 

  35. Vernik, S. and Pinner, R., Khimicheskaya i elektrokhimicheskaya obrabotka alyuminiya i ego splavov (Chemical and Electrochemical Treatment of Aluminum and Its Alloys), Leningrad: Sudpromgiz, 1960.

    Google Scholar 

  36. Fernández-Romero, Montero-Moreno, J.M., Pellicer, E., Peiró, F., et al., Mater. Chem. Phys., 2008, vol. 111, p. 542.

    Article  Google Scholar 

  37. Basaev, A.S., Shulitskii, B.G., Vorob’eva, A.I., et al., Rossiiskie Nanotekhnologii, 2011, vol. 6, nos. 3–4, pp. 8–15.

    Google Scholar 

  38. Sun-Kyu Hwang, Junghyun Lee, Soo-Hwan Jeong, et al., Nanotechnology, 2005, vol. 16, p. 850.

    Article  Google Scholar 

  39. Tatsuya Iwasaki, Taiko Motoi, and Tohru Den, Appl. Phys. Lett., 1999, vol. 75, no. (14), p. 2044.

    Article  Google Scholar 

  40. Xu, N.S. and Ejaz, Hug., Mater. Sci. Eng. R, 2005, vol. 48, p. 47.

    Article  Google Scholar 

  41. Milne, W.I., Teo, K.B.K., Amaratunga, G.A.J., et al., J. Mater. Chem., 2004, vol. 14, p. 933.

    Article  Google Scholar 

  42. Hironori Orikasa, Nobuhiro Inokuma, Somlak Ittisanronnachai, Xiao-Hui Wang, Osamu Kitakami, and Takashi Kyotani, Chem. Commun., 2008, p. 2215.

  43. Wu, X.B., Li, J.T., Wu, G.T., et al., Appl. Phys. Lett., 2003, vol. 83, p. 3389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Vorob’eva.

Additional information

Original Russian Text © A.I. Vorob’eva, B.G. Shulitskii, 2012, published in Mikroelektronika, 2012, Vol. 41, No. 5, pp. 315–323.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorob’eva, A.I., Shulitskii, B.G. Aligned carbon tubes synthesized using porous aluminum oxide. Russ Microelectron 41, 285–292 (2012). https://doi.org/10.1134/S1063739712030080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739712030080

Keywords

Navigation