Skip to main content

Influence of optical properties of the SOI structure on the wafer temperature during rapid thermal annealing


Optical characteristics are compared theoretically, and temperature differences of the Si wafer with the B-doped SOI structure and substrate wafer are evaluated during rapid thermal annealing. It is shown that under identical annealing conditions and temperatures above 800 K, the difference in their temperatures can reach ∼30 K. We studied the dependence of the total emissivity and temperature of the wafer with the SOI structure on the concentration of the doping impurity in the Si layer. The method of the quantitative analysis of variations of the wafer temperature under invariable annealing conditions depending on the variations of emissivity of its surfaces is suggested.

This is a preview of subscription content, access via your institution.


  1. 1.

    Rapid Thermal Processing, Boston, Mater. Res. Soc., 1985, vol. 52.

  2. 2.

    Singh, R., Rapid Thermal Processing, J. Appl. Phys., 1988, vol. 63, no. 8, pp. R50–R110.

    Google Scholar 

  3. 3.

    Averkin, A.N., Orlikovskii, A.A., and Rudenko, K.V., Plasma-Immersion Ion Implantation of Boron for the Formation of Ultrashallow p +-n Junctions in Silicon, Proc. 3rd Int. Symp. on Theoretical and Applied Plasma Chemistry, vol. 2, Ples, 2002, pp. 360–362.

    Google Scholar 

  4. 4.

    Fiory, A.T., Recent Developments in Rapid Thermal Processing, JOM, June 2005, pp. 1–26.

  5. 5.

    Nulman, J. Antonio, S., and Blonigan, W. Observation of Silicon Wafer Emissivity in Rapid Thermal Processing Chambers for Pyrometric Temperature Monitoring, Appl. Phys. Lett., 1990, vol. 56, no. 25, pp. 2513–2515.

    Article  Google Scholar 

  6. 6.

    Block, T.R., Farley, C.W., and Streetman, B.G., High Temperature Annealing of GaN, InN, AlN and Related Alloys, J. Electochem. Soc., 1986, vol. 133, p. 450.

    Article  Google Scholar 

  7. 7.

  8. 8.

    Ovcharov, V., Rudakov, V., Kurenya, A., and Simakin, S., Diffusion Simulation during RTA of Plasma Immersion Ion Implanted Boron in SOI Structure, in Proc. Int. Conf. “Modern Problems in the Physics of Surfaces and Nanostructures” (IC MPSN-2010), Yaroslavl, 2010, P3–16.

    Google Scholar 

  9. 9.

    Siegel, R. and Howell J.R., Thermal Radiation Heat Transfer, New York: Hemisphere, 1981.

    Google Scholar 

  10. 10.

    Zhang, Z.M., Nano/Microscale Heat Transfer, New York: McGraw-Hill, 2007.

    Google Scholar 

  11. 11.

    Lee, B.J. and Zhang, Z.M., Rad-Pro Effective Software for Modeling Radiative Properties in Rapid Thermal Processing, in Proc. 13th Ann. Int. Conf. Adv. Thermal Processing of Semiconductors (RTR’2005), Santa Barbara, 2005, pp. 275–281.

  12. 12.

    Rudakov, V.I., Ovcharov, V.V., and Prigara, V.P, Influence of a Rough Surface of the Silicon Wafer on Its Temperature during Heating with Incoherent Radiation, Mikroelektronika, 2010, vol. 39, no. 1, pp. 3–13.

    Google Scholar 

  13. 13.

    Zvorykin, D.B. and Prokhorov, Yu.I., Primenenie luchistogo infrakrasnogo nagreva v elektronnoi promyshlennosti (Application of Beam Infrared Heating in Electron Industry), Moscow: Energiya, 1980.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. I. Rudakov.

Additional information

Original Russian Text © V.I. Rudakov, V.V. Ovcharov, V.P. Prigara, 2012, published in Mikroelektronika, 2012, Vol. 41, No. 1, pp. 20–29.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rudakov, V.I., Ovcharov, V.V. & Prigara, V.P. Influence of optical properties of the SOI structure on the wafer temperature during rapid thermal annealing. Russ Microelectron 41, 15–24 (2012).

Download citation


  • Emissivity
  • Total Emissivity
  • Rapid Thermal Annealing
  • Back Side
  • RUSSIAN Microelectronics