Skip to main content

Increasing the efficiency of photoelectric cells by nanostructuring their surface

Abstract

A method of fabrication of nanostructured objects, which increases the efficiency of the photo-electric system used in the conversion of energy of electromagnetic radiation into electric energy is suggested. The method is based on the formation of metal nanodots on the basis of the surface layer of porous silicon, which concentrates the energy of electromagnetic radiation due to localized plasmon modes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Katchpole, K.R. and Polman, A., Optics Express, 2008, vol. 16, no. 26, pp. 21793–21800.

    Article  Google Scholar 

  2. 2.

    Schaadt, D.M., Feng, B., and Yu, E.T., Appl. Phys. Lett., 2005, vol. 86, p. 063106.

    Article  Google Scholar 

  3. 3.

    Maiers, S.A., Plasmonics: Fundamentals and Applications, Springer, 2007.

  4. 4.

    Dobrzynsky, L. and Maradudin, A.A., Phys. Rev. B:, 1972, vol. 6, no. 10, pp. 3810–3815.

    Article  Google Scholar 

  5. 5.

    Eguiluz, A. and Maradudin, A.A., Phys. Rev. B, 1976, vol. 14, no. 12, pp. 5526–5528.

    Article  Google Scholar 

  6. 6.

    Davis, L.C., Phys. Rev. B:, 1976, vol. 14, no. 12, pp. 5523–5525.

    Article  Google Scholar 

  7. 7.

    Boardman, A.D., Aers, G.C., and Teshima, R., Phys. Rev. B:, 1981, vol. 24, no. 10, pp. 5703–5712.

    Article  MathSciNet  Google Scholar 

  8. 8.

    Nazarov, M.M., Femtosekundnye nelineino-opticheskie protsessy, usilennye poverkhnostnymi elektromagnitnymi volnami (Femtosecond Nonlinear Optical Process Enhanced by Surface Electromagnetic Waves) Doctoral (Phys.-Math.) Dissertation, Moscow, MGU, 2002.

    Google Scholar 

  9. 9.

    Emel’yanov, A.M., Sobolev, N.A., Mel’nikova, T.M., and Pizzini, S., Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2003, vol. 37, no. 6, pp. 756–761 [Semiconductors (Engl. Transl.), vol. 37, no. 6, pp. 730–735].

    Google Scholar 

  10. 10.

    Laptev, A.N., Prokaznikov, A.V., and Rud’, N.A., Pis’ma Zh. Tekh. Fiz., 1997, vol. 23, no. 11, pp. 59–65.

    Google Scholar 

  11. 11.

    Buchin, E.Yu., Laptev, A.N., Prokaznikov, A.V., Rud’, N.A., Svetovoi, V.B., and Chirkov, A.N., Pis’ma Zh. Tekh. Fiz., 1997, vol. 23, no. 11, pp. 70–76.

    Google Scholar 

  12. 12.

    Kaganovich, E.B., Manoilov, E.G., and Svechnikov, S.V., Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1999, vol. 33, no. 3, pp. 327–331.

    Google Scholar 

  13. 13.

    Gudovskikh, A.S., Kalyuzhnyi, N.A., Lantratov, V.A., Mintairov, S.A., Shvarts, M.Z., and Andreev, V.M., Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2009, vol. 43, no. 10, pp. 1403–1408 [Semiconductors (Engl. Transl.), vol. 43, no. 10, pp. 1363–1368].

    Google Scholar 

  14. 14.

    Kochergin, V. and Foell, H., Porous Semiconductors: Optical Properties and Applications, Springer, 2009, p. 207.

  15. 15.

    Buchin, E.Yu., Vaganova, E.I., Naumov, V.V., Paporkov, V.A., and Prokaznikov, A.V., Pis’ma Zh. Tekh. Fiz., 2009, vol. 35, no. 13, pp. 8–17 [Tech. Phys. Lett. (Engl. Transl.), vol. 35, no. 13, pp.

    Google Scholar 

  16. 16.

    Gan’shina, E.A., Vashuk, M.V., Vinogradov, A.N., Granovskii, A.V., Gushchin, V.S., Shcherbak, P.N., Kalinin, Yu.E., Kalinin, Yu.E., Sitnikov, A.V., Kim, Ch.O., and Kim, Ch.G., Zh. Eksp. Teor. Fiz., 2004, vol. 125, no. 5, pp. 1172–1183.

    Google Scholar 

  17. 17.

    Krinchik, G.S., Fizika magnitnykh yavlenii (Physics of Magnetic Phenomena), Moscow: MGU, 1976.

    Google Scholar 

  18. 18.

    Naumov, V.V, Paporkov, V.A., and Lokhanin, M.V., Mikroelectronika, 2009, vol. 38, no 4, pp. 1–6 [Russian Microelectronics, 2009, vol. 35, no. 4, pp. 251–256].

    Google Scholar 

  19. 19.

    Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1970.

    Google Scholar 

  20. 20.

    Zolotarev, V.M., Morozov, V.N., and Smirnov, E.V., Opticheskie postoyannye prirodnykh i tekhnicheskikh sred (Optical Constants of Natural and Technical Media), Leningrad: Khimiya, 1984.

    Google Scholar 

  21. 21.

    Brendel, R., Thin-Film Crystalline Silicon Solar Cells: Physics and Technology, Wiley-VCH, 2003.

  22. 22.

    Buchin, E.Yu., Churilov, A.B., and Prokaznikov, A.V., Appl. Surf. Science, 1996, vol. 102, pp. 431–435.

    Article  Google Scholar 

  23. 23.

    Sze, S.M., Physics of Semiconductor Devices, Moscow: Wiley, 1981.

    Google Scholar 

  24. 24.

    Lax, B. and Neustadter, S.F.J., Appl. Phys., 1954, vol. 25, no. 9, pp. 1148–1154.

    Article  Google Scholar 

  25. 25.

    Vavilov, V.S., Malovetskaya, V.M., Galkin, G.N., and Landsman, A.P., Usp. Fiz. Nauk, 1957, vol. 63, no. 1, pp. 124–129.

    Google Scholar 

  26. 26.

    Schilinsky, P., Waldauf, Ch., Hauch, J., and Brabec, Ch.J., J. Appl. Phys., 2004, vol. 95, no. 5, pp. 2816–2819.

    MATH  Article  Google Scholar 

  27. 27.

    Andreev, L.N. Griliches, V.A., and Rumyantsev, V.D., Fotoelektricheskoe preobrazovanie kontsentrirovannogo solnechnogo izlucheniya (Photoelectric Conversion of Concentrated Solar Radiation), Leningrad: Nauka, 1989.

    Google Scholar 

  28. 28.

    Koshida, N. and Koyama, H., Appl. Phys. Lett., 1992, vol. 60, no. 2, pp. 347–349.

    Article  Google Scholar 

  29. 29.

    Namavar, F., Maruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett., 1992, vol. 60, no. 20, pp. 2514–2516.

    Article  Google Scholar 

  30. 30.

    Ben-Chorin, M., Moller, F., and Koch, F., J. Appl. Phys., 1995, vol. 77, no. 9, pp. 4482–4488.

    Article  Google Scholar 

  31. 31.

    Pines, D., Elementary Excitations in Solids, New York: Benjamin, 1963.

    Google Scholar 

  32. 32.

    Falk, A.L., Koppens, F.H.L., Chun, L.Yu. et al., Nature Physics, 2009, vol. 5, pp. 475–479.

    Article  Google Scholar 

  33. 33.

    Chang, D.E., Sorensen, A.S., Hemmer, P.R., and Lukin, M.D., Phys. Rev. B:, 2007, vol. 76, p. 035420.

    Article  Google Scholar 

  34. 34.

    Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  35. 35.

    Bredov, M.M., Rumyantsev, V.V., and Toptygin, I.N., Klassicheskaya elektrodinamika (Classical Electrodynamics), St. Petersburg: Lan’, 2004, p. 400.

    Google Scholar 

  36. 36.

    MiePlot, http://www.philiplaven.com/mieplot.htm.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Prokaznikov.

Additional information

Original Russian Text © E.I. Vaganova, A.A. Mironenko, V.A. Paporkov, N.A. Rud’, A.S. Rudyi, A.V. Prokaznikov, 2011, published in Mikroelektronika, 2011, Vol. 40, No. 1, pp. 36–44

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vaganova, E.I., Mironenko, A.A., Paporkov, V.A. et al. Increasing the efficiency of photoelectric cells by nanostructuring their surface. Russ Microelectron 40, 31–39 (2011). https://doi.org/10.1134/S1063739711010070

Download citation

Keywords

  • Porous Silicon
  • Ideality Factor
  • RUSSIAN Microelectronics
  • Plasmon Mode
  • Photovoltaic Cell