Skip to main content

Effect of surface roughness on the temperature of a silicon wafer heated by incoherent radiation


The effect of surface roughness of a silicon wafer on its temperature on heating by incoherent radiation is studied. The temperature-time diagrams of heating and cooling are obtained experimentally for double-side- and single-side-polished wafers at different arrangements of the rough surface with respect to the radiation source. The steady-state temperatures of such wafers under identical conditions of heating from 100 to 250°C are compared. It is established that the highest steady-state temperatures are common to the wafers presenting their rough side to the radiation source, the lowest steady-state temperatures to the double-side- polished wafers, and the intermediate temperatures to the wafers presenting their polished side to the radiation source. An optical model of the rough surface is suggested. In this model, the rough surface is represented by a negligibly thin damaged layer characterized by its own optical parameters. In the model, an optical parameter is introduced to characterize the degree of roughness of the illuminated surface. The dependence of the absorptivity of the wafer on this parameter and on the arrangement of the rough surface with respect to the radiation source is treated theoretically. The model provides a qualitative interpretation of the experimental data.

This is a preview of subscription content, access via your institution.


  1. 1.

    Zogg, H., Alchalab, K., Zimin, D., and Kellerman, K., Two Dimensional Monolithic Lead Chalcogenide Infrared Sensor Arrays on Silicon Read-out Chips and Noise Mechanisms, IEEE Transactions on Electron Devices, 2003, vol. 50, no. 1, pp. 209–214.

    Article  Google Scholar 

  2. 2.

    Ugai, Ya. A., Samoilov, A.M., Sharov, M.K., Arsenov, A.V., and Buchnev, S.A., Growth of PbTe Films Doped with Gallium during the Growth on Si Substrates by the Modified Hot-Wall Technique, Poverkhnost. Rentgenovskie, Sinkhrotronnye, i Neitronnye Issledovaniya, 2002, no. 3, pp. 28–36.

  3. 3.

    Rudakov, V.I., Kurenya, A.L., Shornikov, A.A., and Gitlin, M.L., Deposition of the IV–VI Films by the Hot-Wall Method on Silicon Substrates 100 mm in Diameter, Mikroelectronika, 2009, vol. 38, no. 5, pp. 374–380 [Russ. Microelectronics (Engl. Transl.), vol. 38, no. 5, pp. 339–344].

    Google Scholar 

  4. 4.

    Ravindra, N.M., Sopori, B., Gokce, O.N., Cheng, S.X., Shenoy, A., Jin, L., Abedrabbo, S., Chen, W., and Zhang, Y., Emissivity Measurements and Modeling of Silicon-Related Materials: an Overview, Intern. J. Thermophys., 2001, vol. 22, no. 5, pp. 1593–1611.

    Article  Google Scholar 

  5. 5.

    Sopori, B., Chen, W., Madjdpour, J., and Ravindra, N.M., Calculation of the Emissivity of Si Wafers, J. Electron. Mater., 1999, vol. 28, no. 12, pp. 1385–1389.

    Article  Google Scholar 

  6. 6.

    Magunov, A.N., Lazernaya termometriya tverdykh tel (Laser Thermometry of Solids), Moscow: Fizmatlit, 2002 [Laser Thermometry of Solids (Engl. Transl.), Cambridge: Cambridge Intern. Sci. Publ., 2003].

    Google Scholar 

  7. 7.

    Toporets, A.S., Optika sherokhovatoy poverkhnosty (Optics of Rough Surfaces) Leningrad: Mashinostroenie, 1988.

    Google Scholar 

  8. 8.

    Sopori, B., Chen, W., Abedrabbo, S., and Ravindra, N.M., Modeling Emissivity of Rough and Textured Silicon Wafers, J. Electron. Mater., 1998, vol. 27, no. 12, pp. 1341–1346.

    Article  Google Scholar 

  9. 9.

    Endelbrecht, J.A., A Technique for Obtaining the Infrared Reflectivity of Back Side-Damaged Silicon Samples, J. Electrochem. Soc., 1990, vol. 137, no. 1, pp. 300–302.

    Article  Google Scholar 

  10. 10.

    Timans, P.J., Emissivity of Silicon at Elevated Temperatures, J. Appl. Phys., 1993, vol. 74, no. 10, pp. 6353–6364.

    Article  Google Scholar 

  11. 11.

    Nulman, J., Antonio, S., and Blongian, W., Observation of Silicon Wafer Emissivity in Rapid Thermal Processing Chambers for Pyrometric Temperature Monitoring, Appl. Phys. Lett., 1990, vol. 56, no. 25, pp. 2513–2515.

    Article  Google Scholar 

  12. 12.

    Zvorykin, D. V. and Prokhorov, Yu. I., Primenenie luchistogo infrakrasnogo nagreva v elektronnoi promyshlennosti (Application of Radiant Infrared Heating in Electronic Engineering), Moscow: Energiya, 1980.

    Google Scholar 

  13. 13.

    Xu, H., and Sturm, J.C., Emissivity of Rough Silicon Surfaces: Measurements and Calculations, Proc. Symp. Mater. Res. Soc., 1995, vol. 387, pp. 29–34.

    Google Scholar 

  14. 14.

    Vandenabeele, P., and Maex, K., Influence of Temperature and Backside Roughness on the Emissivity of Si Wafers during Rapid Thermal Processing, J. Appl. Phys., 1992, vol. 72, no. 12, pp. 5867–5875.

    Article  Google Scholar 

  15. 15.

    Zhang, Z.M., Nano/Microscale Heat Transfer, New York: McGraw-Hill, 2007.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. V. Ovcharov.

Additional information

Original Russian Text © V.I. Rudakov, V.V. Ovcharov, V.P. Prigara, 2010, published in Mikroelektronika, 2010, Vol. 39, No. 1, pp. 3–13

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rudakov, V.I., Ovcharov, V.V. & Prigara, V.P. Effect of surface roughness on the temperature of a silicon wafer heated by incoherent radiation. Russ Microelectron 39, 1–11 (2010).

Download citation


  • Silicon Wafer
  • RUSSIAN Microelectronics
  • Steady State Temperature
  • Rapid Thermal Processing
  • Linear Absorption Coefficient