Skip to main content

Simulation of the effects of deep grooving in silicon in the plasmochemical cyclic process

Abstract

The results of computer simulation of the effects of the formation of deep groove profiles in silicon during the cyclic etching-passivating process in SF6/C4F8 plasma are reported. It is shown that the groove profile varies under variations in one of the basic parameters of the process, the etching-passivation time ratio at different probabilities of the reactions of etching and the deposition of a fluorocarbon film. The sensitivity of the model to these parameters is determined. Grooves with different tilt angles of walls are simulated, and the opportunity for controlling the groove profile by varying the parameters during grooving is shown.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    McAuley, A., Ashraf, H., Atabo, L., Chambers, A., Hall, S., Hopkins, J., and Nicholls, G.S., Silicon Micromachining Using a High-Density Plasma Source, J. Phys,. D: Appl. Phys., 2001, vol. 34, no. 18, pp. 2769–2774.

    Article  Google Scholar 

  2. 2.

    Laermer, F. and Urban, A., Challenges, Developments and Applications of Silicon Deep Reactive Ion Etching, Microelectron. Eng., 2003, vol. 67–68, pp. 349–355.

    Article  Google Scholar 

  3. 3.

    Rangelow, I.W., Critical Tasks in High Aspect Ratio Silicon Dry Etching for Micro-Electromechanical Systems, J. Vac. Sci. Technol., 2003, vol. A21, no. 4, pp. 1550–1562.

    Google Scholar 

  4. 4.

    Chang, C., Wang, Y-F., Kanamori, Y., Shih, J.-J., Kawai, Y., Lee, C.-K., Wu, K.-C., and Esashi, M., Etching Submicrometer Trenches by Using the Bosch Process and Its Application To the Fabrication of Antireflection Structures, J. Micromech. Microeng., 2005, vol. 15, no. 3, pp. 580–585.

    Article  Google Scholar 

  5. 5.

    Zhu, Y., Yan, G., Fan, J., Zhou, Liu, X., Li, Z., and Wang, Y. Fabrication of keyhole-free ultra-deep high-aspect-ratio isolation trench and its application, J. Micromech. Microeng., 2005, vol. 15, no. 3, pp. 636–642.

    Article  Google Scholar 

  6. 6.

    Blauw, M.A., Cracium, W., Sloof, W.G., French, P.J., and Drift, E., Advanced Time-Multiplexed Plasma Etching of High Aspect Ratio Silicon Structures, J. Vac. Sci. Technol., 2002, vol. 20, no. 6, pp. 1896–1904.

    Google Scholar 

  7. 7.

    Boufinichel, M. and Aachboun, S., Profile Control of High Aspect Ratio Trenches of Silicon. II. Study of the Mechanisms Responsible for Local Bowing Formation and Elimination of This Effect, J. Vac. Sci. Technol., 2003, vol. 21, no. 1, pp. 267–273.

    Article  Google Scholar 

  8. 8.

    Rangelow, I.W., Critical Tasks in High Aspect Ratio Silicon Dry Etching for Micro-Electromechanical Systems, J. Vac. Sci. Technol., 2003, vol. A21, no. 4, pp. 1550–1562.

    Google Scholar 

  9. 9.

    Craigie, C.J.D., Sheehan, T., Johnson, V.N., Burkett, S.L., Moll, A.J., and Knowlton, W.B., Polymer Thickness Effects on Bosch Etch Profiles, J. Vac. Sci. Technol., 2002, vol. 20, no. 6, pp. 2229–2232.

    Article  Google Scholar 

  10. 10.

    Volland, B.E. and Rangelow, I.W., The Influence of Reactant Transport on the Profiles of Gas Chopping Etching Processes: a Simulation Approach, Microelectron. Eng., 2003, vol. 67–68, pp. 338–348.

    Article  Google Scholar 

  11. 11.

    Zhou, R., Zhang, H., Hao, Y., and Wang, Y., Simulation of the Bosch Process with a String-Cell Hybrid Method, J. Micromech. Microeng., 2004, vol. 14, no. 7, pp. 851–858.

    Article  Google Scholar 

  12. 12.

    Tan, Y., Zhou, R., Zhang, H., Lu, G., and Li, Z., Modeling and Simulation of the Lag Effect in a Deep Reactive Ion Etching Process, J. Micromech. Microeng., 2006, vol. 16, no. 12, pp. 2570–2575.

    Article  Google Scholar 

  13. 13.

    Kokkorisa, G., Tserepi, A., Boudouvis, A.G., and Gogolides, E., Simulation of SiO2 and Si Feature Etching for Microelectronics and Microelectromechanical Systems Fabrication: A Combined Simulator Coupling Modules of Surface Etching, Local Flux Calculation, and Profile Evolution, J. Vac. Sci. Technol., 2004, vol. A22, no. 4, pp. 1896–1902.

    Google Scholar 

  14. 14.

    Rauf, S., Dauksher, W.J., Clemens, S.B., and Smith, K.H., Model for a Multiple-Step Deep Si Etch Process, J. Vac. Sci. Technol., 2002, vol. A20, no. 4, pp. 1177–1190.

    Google Scholar 

  15. 15.

    Shumilov, A.S. and Amirov, I.I., Modeling of deep grooving of silicon in the process of plasmochemical cyclic etching/passivation, Mikroelektronika, 2007, vol. 36, no. 4, pp. 295–305 [Russ. Microelectronics (Engl. Transl.), vol. 36, no. 4, pp. 241–250].

    Google Scholar 

  16. 16.

    Bose, D., Rauf, S., Hash, D.B., Govindan, T.R., and Meyyappan, M., Monte Carlo Sensitivity Analysis of CF2 and CF Radical Densities in a C-C4F8 Plasma, J. Vac. Sci. Technol., 2004, vol. A22, no. 6, pp. 2290–2298.

    Google Scholar 

  17. 17.

    Gogolides, E., Vauvert, P., Kokkoris, G., Turban, G., and Boudouvis, A.G., Etching of SiO2 and Si in Fluorocarbon Plasmas: A Detailed Surface Model Accounting for Etching and Deposition, J. Appl. Phys., 2000, vol. 88, no. 10, pp. 5570–5578.

    Article  Google Scholar 

  18. 18.

    Sowa, M.J., Littau, M.E., Pohray, V., and Cecchi, J.L., Fluorocarbon Polymer Deposition Kinetics in a Low-Pressure, High-Density, Inductively Coupled Plasma Reactor, J. Vac. Sci. Technol., 2000, vol. A18, no. 5, pp. 2122–2134.

    Google Scholar 

  19. 19.

    Kimura, Y., Coburn, J.W., and Graves, D.B., Vacuum Beam Studies of Fluorocarbon Radicals and Argon Ions on Si and SiO2 Surfaces, J. Vac. Sci. Technol., 2004, vol. A22, no. 6, pp. 2508–2516.

    Google Scholar 

  20. 20.

    Martin, I.T. and Fisher, E.R., Ion Effects on CF2 Surface Interactions During C3F8 and C4F8 Plasma Processing of Si, J. Vac. Sci. Technol., 2004, vol. A22, no. 5, pp. 2168–2174.

    Google Scholar 

  21. 21.

    Amirov, I.I. and Alov, N.V., Polymer film deposition in inductively coupled radio-frequency discharge plasma of perfluorocyclobutane mixed with sulfur hexafluoride, Khim. Vys. Energ., 2006, vol. 40, no. 4, pp. 311–316 [High Energy Chem. (Engl. Transl.), vol. 40, no. 4, pp. 267–272].

    Google Scholar 

  22. 22.

    Lukichev, V.F. and Yunkin, V.A., Scaling of etching rates and the similarity of profiles produced by plasmochemical etching, Mikroelektronika, 1998, vol. 27, no. 3, pp. 229–239.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. F. Lukichev.

Additional information

Original Russian Text © A.S. Shumilov, I.I. Amirov, V.F. Lukichev, 2009, published in Mikroelektronika, 2009, Vol. 38, No. 6, pp. 428–435.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shumilov, A.S., Amirov, I.I. & Lukichev, V.F. Simulation of the effects of deep grooving in silicon in the plasmochemical cyclic process. Russ Microelectron 38, 385 (2009). https://doi.org/10.1134/S1063739709060031

Download citation

PACS

  • 52.77.Bn
  • 81.65.Cf