Abstract
Methods of formation of thin film structures and sensor elements based on carbon nanotubes have been developed. Methods of integration using deposition from solutions, probe micromechanics and the electrokinetic positioning of nanotubes providing compatibility with traditional microelectronic technology, are suggested. Peculiarities of the parallel integration of carbon nanotubes in the process of formation of thin films, networks, and individual conduction channels are revealed.
This is a preview of subscription content, access via your institution.
References
Bobrinetskii, I.I., Nevolin, V.K., Stroganov, A.A., and Chaplygin, Yu.A., Modulation of conductance of bundles of single walled carbon nanotubes, Mikroelektronika, 2004, vol. 33, no. 5, pp. 356–361.
Bobrinetskii, I.I., Sensor properties of the structures based on carbon nanotubes, Rossiiskie Nanotekhnologii, 2007, vol. 2, no. 5–6, pp. 90–94.
Li, W.Z., Xie, S.S., Qian, X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G. Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, 1996, vol. 274, no. 5293, pp. 1701–1703.
Hsiao, C.H., Weng, C.H., Liu, K.K., Huang, S.Y., Tsai, C.H., and Leou, K.C., Toward the Synthesis of High-Quality Single-Walled Carbon Nanotube at Low Temperatures by Plasma-Enhanced Chemical Vapor Deposition // Ninth Internetional Conference on the Science and Application of Nanotubes. Book of Abstract, Le Corum, Montpellier, France, 2008, p. 498.
Dittmer, S., Mudgal, S., Nerushev, O.A., Campbell, E.E.B. Local heating method for growth of aligned carbon nanotubes at low ambient temperature // Fizika Nizkikh Temperatur, 2008, vol. 34, no. 10, pp. 1058–1062.
Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., and Yodh, G., High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water, Nano Letters, 2003, vol. 3, no. 2, pp. 269–273.
Fu, Q. and Liu, J., Effects of Ionic Surfactant Adsorption on Single-Walled Carbon Nanotube Thin Film Devices in Aqueous Solutions. Langmuir, 2005, vol. 21, pp. 1162–1165.
Bobrinetskii, I.I., Stroganov, A.A., Nevolin, V.K., Ivanova, O.M., and Krutovertsev, S.A., Sensitivity of structures based on bundles of carbon nanotubes to measurements of ammonia concentration. Datchiki i Sistemy, 2007, no. 9, pp. 22–27.
Nevolin, V.K., Zondovye nanotekhnologii v elektronike. (Probe nanotechnologies for electronics), Moscow: Tekhnosfera, 2006, 2nd ed.
Hertel, T., Martel, R., and Avouris, Ph., Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces, J. Phys. Chem., B, 1998, vol. 102, pp. 910–915.
Bobrinetskii, I.I. and Nevolin, V.K., Micromechanics of carbon nanotubes on substrates, Mikrosistemnaya Tekhnika, 2002, no. 4, pp. 20–21.
Bobrinetskii, I.I., Nevolin, V.K., Roshchin, V.M., and Snisarenko, E.A., Formation of nanocontacts during local oxidization of titanium films, Mikrosistemnaya Tekhnika, 2001, no. 11, pp. 42–45.
Yu, M., Lourie, O., and Dyer, M., Strength Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, vol. 287, pp. 637–640.
Avouris, Ph., Hertel, T., Martel, R., and Schmidt, T., Shea H.R., and Walkup, R.E. Carbon Nanotubes: Nanomechanics, Manipulation, and Electronic Devices, Applied Surface Science, 1999, vol. 141, pp. 201–209.
Roschier, L., Pentilla, J., and Martin, M., Single-Electron Transistor Made of Multiwalled Carbon Nanotube Using Scanning Probe Manipulation, Appl. Phys. Lett., 1999, vol. 75, no. 5, pp. 728–730.
Bobrinetskii, I.I., Nevolin, V.K., Khartov, S.V., and Chaplygin, Yu.A., Modulation of conductance of quasi-one-dimensional molecular microconductors, Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2005, vol. 31, no. 20, pp. 65–69.
Yamamoto, K., Akita, S., and Nakayama, Y., Orientation and Purification of Carbon Nanotubes Using AC Electrophoresis, J. Phys., D: Appl. Phys., 1998, vol. 31, pp. L34–L36.
Dukhin, S.S. and Deryagin, B.V., Elektroforez (Electrophoresis), Moscow: Nauka, 1976.
Glik, B. and Pasternak, Dzh., Molekulyarnaya biotekhnologiya. Printsipy i primenenie (Molecular Boitechnology: Fundamentals and Applications), Moscow: Mir, 2002.
Wang, X-B., Huang, Y., Becker, F.F., and Gascoyne, P.R.C., A Unified Theory or Dielectrophoresis and Traveling Wave Dielectrophoresis, J. Phys., D: Appl. Phys., 2004, vol. 27, pp. 1571–1574.
Monica, A.H., Papadakis, S.J., Osiander, R., and Paranjape, M., Wafer-Level Assembly of Carbon Nanotube Networks Using Dielectrophoresis, Nanotecnology, 2008, vol. 19, pp. 085303–085307.
Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., and Krupke, R., Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices, Nano Lett, 2007, vol. 7, no. 6, pp. 1556–1560.
Bobrinetskii, I.I., Nevolin, V.K., Gorshkov, K.V., and Dan’kin, D.A., Using the method of dielectrophoresis for formation of integrated structures based on carbon nanotubes // Nano- i mikrosistemnaya tekhnika, 2009, no. 2, (in press).
Wang, Y.M., Han, W.-Q., and Zettl, A., Trapping and Aligning Carbon Nanotubes Via Substrate Geometry Engineering, New Journal of Physics, 2004, vol. 6, pp. 15–18.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © I.I. Bobrinetskii, 2009, published in Mikroelektronika, 2009, Vol. 38, No. 5, pp. 353–360.
Rights and permissions
About this article
Cite this article
Bobrinetskii, I.I. Methods of parallel integration of carbon nanotubes during the formation of functional devices for microelectronics and sensor technologies. Russ Microelectron 38, 320–326 (2009). https://doi.org/10.1134/S1063739709050047
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063739709050047
PACS
- 78.70.Bj