Skip to main content
Log in

Emission tomography of plasma in technological reactors of microelectronics

  • Dynamics of Technological Processes and Equipment
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Optical emission tomography is a promising method for the analysis of the lateral distribution of the particle density in plasma of plasma-chemical reactors, which is very critical in technological processes of microelectronics on large-diameter wafers. In this work, we propose an algorithm of the tomographic reconstruction of the 2D distribution of plasma components in the cross section of the reactor by their spectrally allowed optical emission at an extremely small number of recording angles. The geometry of the collection of the tomographic data was selected so that it would be compatible with the existing industrial types of plasma reactors. The algorithm is tested for artificially created phantoms in a physical model experiment and is applied to an actual plasma chemical reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loewenhardt, P., Zawalski, W., Ye, Y., Zhao, A., Webb, T.R., Tajima, D., and Ma, D.X., Plasma Diagnostics: Use and Justification in an Industrial Environment, Jpn. J. Appl. Phys., Pt. 1, 1999, vol. 38, pp. 4362–4366.

    Article  Google Scholar 

  2. McMillin, B.K. and Zachariah, M.R., Two-Dimensional Imaging of CF2 Density by Laser-Induced Fluorescence in CF4 Etching Plasmas in the Gaseous Electronics Conference Reference Cell, J. Vac. Sci. Technol. A, 1997, vol. 15, pp. 230–237.

    Article  Google Scholar 

  3. Steffens, K.L. and Sobolevski, M.A., Planar Laser-Induced Fluorescence of CF2 in O2/CF4 and O2/C2F6 Chamber-Cleaning Plasmas: Spatial Uniformity and Comparison to Electrical Measurements, J. Vac. Sci. Technol. A, 1999, vol. 17, pp. 517–527.

    Article  Google Scholar 

  4. Hermen, G., Vosstanovlenie izobrazhenii po proektsiyam: Osnovy rekonstructivnoi tomographii (Reconstruction of Images by Projections: Foundations of Reconstructive Tomography), Moscow: Mir, 1983 (in Russian).

    Google Scholar 

  5. Tikhonov, A.N., Arsenin, V.Ya., and Timonov, A.A., Matematicheskie zadachi komp’yuternoi tomographii (Mathematical Problems of Computer Tomography), Moscow: Nauka, 1987.

    Google Scholar 

  6. Fedorov, G.A. and Tereshchenko, S.A., Vychislitel’naya emissionnaya tomografiya (Computational Emission Tomography), Moscow: Energoatomizdat, 1990.

    Google Scholar 

  7. Pikalov, V.V. and Mel’nikova, T.S., Tomografiya plasmy (Tomography of Plasma), Novosibirsk: Nauka, 1995.

    Google Scholar 

  8. Okigawa, A., Makabe, T., Shibagaki, T., Nakano, N., Petrovich, Z.Lj., Kogawa, T., and Itoh, A., Robot Assisted Optical Emission Tomography in an Inductively Coupled Plasma Reactor, Jpn. J. Appl. Phys., Pt. 1, 1996, vol. 35, pp. 1890–1893.

    Article  Google Scholar 

  9. Okigawa, A., Tadakoro, M., Itoh, A., Nakano, N., Petrovic, Z.Lj., and Makabe, T., Three Dimensional Optical Emission Tomography of an Inductively Coupled Plasma, Jpn. J. Appl. Phys., Pt. 1, 1997, vol. 36, pp. 4605–4616.

    Article  Google Scholar 

  10. Denisova, N.V., Maximum-Entropy-Based Tomography for Gas and Plasma Diagnostics, J. Phys. D: Appl. Phys., 1988, vol. 31, 1888–1895.

    Article  Google Scholar 

  11. Denisova, N.V., Two-View Tomography, J. Phys. D: Appl. Phys., 2000, vol. 33, pp. 313–319.

    Article  Google Scholar 

  12. Denisova, N., A Maximum a posteriori Reconstruction Method for Plasma Tomography, Plasma Sources Sci. Technol., 2004, vol. 13, pp. 531–536.

    Article  Google Scholar 

  13. Zdunek, R., Multigrid Regularized Image Reconstruction for Limited-Data Tomography, Comp. Meth. Sci. Technol., 2007, vol. 13, no. 1, pp. 67–77.

    Google Scholar 

  14. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrectnykh zadach (Methods of Solution of Incorrect Problems), Moscow: Nauka, 1979.

    Google Scholar 

  15. Benck, E.C. and Etemadi, K., Fiber Optic Based Optical Tomography Sensor for Monitoring Plasma Uniformity, Proc. AIP Conf., New York: Academic, 2001, vol. 550, pp. 268–272.

    Chapter  Google Scholar 

  16. Hutton, B.F. et al., Application of Distance-Dependent Resolution Compensation and Post-Reconstruction Filtering for Myocardial SPECT, Phys. Med. Biol., 1998, vol. 43, pp. 1679–1693.

    Article  Google Scholar 

  17. Orlikovskii, A.A., Rudenko, K.V., and Averkin, S.N., Precision Plasma Chemical Processes of Microelectronics on the Basis of a Series of Pilot Installations with the Scaled ICP Plasma Source, Khim. Vys. Energ., 2006, vol. 40, no. 3, pp. 220–232.

    Google Scholar 

  18. Liberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fadeev.

Additional information

Original Russian Text © A.V. Fadeev, K.V. Rudenko, V.F. Lukichev, A.A. Orlikovskii, 2009, published in Mikroelektronika, 2009, Vol. 38, No.2, pp. 107–121.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadeev, A.V., Rudenko, K.V., Lukichev, V.F. et al. Emission tomography of plasma in technological reactors of microelectronics. Russ Microelectron 38, 95–109 (2009). https://doi.org/10.1134/S1063739709020036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739709020036

PACS

Navigation