Russian Microelectronics

, 37:363 | Cite as

Elastic-stress relaxation in heteroepitaxial structures investigated by computer simulation

  • O. S. TrushinEmail author
Micro- and Nanostructure Modeling


Atomic mechanisms of elastic-stress relaxation in heteroepitaxial structures are investigated by computer simulation. A 2D model of a heteroepitaxial structure with an empirical interatomic potential is considered. Advanced methods of saddle-point search in a multidimensional space are used to identify main mechanisms of structural change involving the formation of a structural imperfection, and to estimate energy characteristics of the processes.

PACS numbers

82.20Wt 83.85.Ft 


  1. 1.
    Bean, J.C., Science, 1985, vol. 230, p. 127.CrossRefGoogle Scholar
  2. 2.
    Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth, 1974, vol. 27, p. 118.Google Scholar
  3. 3.
    Ball, C.A.B. and van der Merwe, J.H., Dislocations in Solids, Nabarro, F.R.N., Ed., Amsterdam: North-Holland, 1983.Google Scholar
  4. 4.
    Politi, P., et al., Phys. Rep., 2000, vol. 324, p. 271.CrossRefGoogle Scholar
  5. 5.
    Gilmore, C.M. and Provenzano, V., Phys. Rev. B, 1990, vol. 42, p. 6899.CrossRefGoogle Scholar
  6. 6.
    Dodson, B.W. and Taylor, P.A., Appl. Phys. Lett., 1986, vol. 49, p. 642.CrossRefGoogle Scholar
  7. 7.
    Taylor, P.A. and Dodson, B.W., Phys. Rev. B, 1987, vol. 36, p. 1355.CrossRefGoogle Scholar
  8. 8.
    Nandedkar, A.S., Srinivasan, G.R., and Murthy, C.S., Phys. Rev. B, 1991, vol. 43, p. 7308.CrossRefGoogle Scholar
  9. 9.
    Much, F., et al., Europhys. Lett., 2001, vol. 56, p. 791.CrossRefGoogle Scholar
  10. 10.
    Granato, E., Kosterlitz, J.M., and Ying, S.C., Phys. Rev. B, 1989, vol. 39, p. 3185.CrossRefGoogle Scholar
  11. 11.
    Tsao, J.Y., et al., Phys. Rev. Lett., 1987, vol. 59, p. 2455.CrossRefGoogle Scholar
  12. 12.
    Luth, H., in Surfaces and Interfaces of Solid Materials, New York: Springer-Verlag, 1998.Google Scholar
  13. 13.
    Zou, J., Cockayne, D.J.H., and Usher, B.F., Appl. Phys. Lett., 1996, vol. 68, p. 673.CrossRefGoogle Scholar
  14. 14.
    Houghton, D.C., J. Appl. Phys., 1991, vol. 70, p. 2136.CrossRefGoogle Scholar
  15. 15.
    Spencer, B.J., Voorhees, P.W., and Davis, S.H., Phys. Rev. Lett., 1991, vol. 67, p. 3696.CrossRefGoogle Scholar
  16. 16.
    Cullis, A.G., Pidduck, A.J., and Emeny, M.T., Phys. Rev. Lett., 1995, vol. 75, p. 2368.CrossRefGoogle Scholar
  17. 17.
    Grilhe, J., Europhys. Lett., 1993, vol. 23, p. 141.CrossRefGoogle Scholar
  18. 18.
    Brochard, S., Beauchamp, P., and Grilhe, J., Philos. Mag. A, 2000, vol. 80, p. 503.CrossRefGoogle Scholar
  19. 19.
    Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett., 1994, vol. 72, p. 3570.CrossRefGoogle Scholar
  20. 20.
    Dong, L., et al., J. Appl. Phys., 1998, vol. 83, p. 217.CrossRefGoogle Scholar
  21. 21.
    Ichimura, M. and Narayan, J., Philos. Mag. A, 1995, vol. 72, p. 281.CrossRefGoogle Scholar
  22. 22.
    Jonsson, H., Mills, G., and Jacobsen, K.W., Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, Classical and Quantum Dynamics in Condensed Phase Simulations, Berne, B.J. et al., Eds., Singapore: World Scientific, 1998.Google Scholar
  23. 23.
    Trushin, O., Granato, E., Ying, S.-C., Salo, P., and Ala-Nissila, T., Phys. Rev. B, 2002, vol. 65, 241408.Google Scholar
  24. 24.
    Trushin, O., Granato, E., Ying, S.-C., Salo, P., and Ala-Nissila, T., Phys. Status Solidi B, 2002, vol. 232, p. 100.CrossRefGoogle Scholar
  25. 25.
    Trushin, O., Granato, E., Ying, S.-C., Salo, P., and Ala-Nissila, T., Energetics and Atomic Mechanisms of Dislocation Nucleation in Strained Epitaxial Layers, Phys. Rev. B, 2003, vol. 68, 155413.Google Scholar
  26. 26.
    Zhen, S. and Davies, G.J., Phys. Status Solidi A, 1983, vol. 78, p. 595.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Yaroslavl Branch, Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia

Personalised recommendations