Skip to main content

Submicrometer- and nanometer-structure formation on the surface of epitaxial IV–VI semiconductor films by Ar-plasma treatment


A method is presented for fabricating submicrometer and nanometer structures on epitaxial films of a IV–VI compound semiconductor on a Si(111) substrate by sputtering with an RF-induction Ar plasma. The role is identified of threading dislocations and terraces on the film surface in the formation of submicrometer and nanometer hillocks. The relationship is determined of sputtering parameters to the RF bias and process time. The self-formation of submicrometer hillocks is traced to dislocation exit sites being masked by Al-containing components.

This is a preview of subscription content, access via your institution.


  1. 1.

    Hung, S.C., Su, Y.K., Chang, S.J., Chen, S.C., Ji, L.W., Fang, T.H., Tu, L.W., and Chen, M., Self-formation of GaN Hollow Nanocolumns by Inductively Coupled Plasma Etching, Appl. Phys. A, 2005, vol. 80, pp. 1607–1610.

    Article  Google Scholar 

  2. 2.

    Milekhin, A.G., Meijers, R.J., Richter, T., Calarco, R., Montanari, S., Luth, H., Paez Sierra, B.A., and Zahn, D.R.T., Raman Scattering Study of GaN Nanostructures Obtained by Bottom-Up and Top-Down Approaches, J. Phys.: Condens. Matter, 2006, vol. 18, pp. 5825–5834.

    Article  Google Scholar 

  3. 3.

    Yoshida, H., Urushido, T., Miyake, H., and Hiramatsu, K., Formation of GaN Self-organized Nanotips by Reactive Ion Etching, Jpn. J. Appl. Phys., Part 1, 2001, vol. 40, no. 12A, pp. L1301–L1304.

    Article  Google Scholar 

  4. 4.

    Furst, J., Pascher, H., Schwarzl, T., Boberl, M., Springholz, G., Bauer, G., and Heiss, W., Continuous-Wave Emission from Midinfrared IV–VI Vertical-Cavity Surface-Emitting Lasers, Appl. Phys. Lett., 2004, vol. 84,no. 17, pp. 3268–3270.

    Article  Google Scholar 

  5. 5.

    Olkhovets, A., Hsu, R.-C., Lipovskii, A., and Wise, F.W., Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots, Phys. Rev. Lett., 1998, vol. 81, no. 16, pp. 3539–3542.

    Article  Google Scholar 

  6. 6.

    Wise, F.W., Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement, Acc. Chem. Res., 2000, vol. 33, pp. 773–780.

    Article  Google Scholar 

  7. 7.

    Grabecki, G., Wrobel, J., Dietl, T., Janik, E., Aleszkiewicz, M., Papis, E., Kaminska, E., Piotrowska, A., Springholz, G., and Bauer, G., PbTe—A New Medium for Quantum Ballistic Devices, Physica E, 2006, vol. 34, pp. 560–563.

    Article  Google Scholar 

  8. 8.

    Schwarzl, T., Heiss, W., Kocher-Oberlehner, G., and Springholz, G., CH4/H2 Plasma Etching of IV–VI Semiconductor Nanostructures, Semicond. Sci. Technol., 1999, vol. 14, no. 2, pp. 11–14.

    Article  Google Scholar 

  9. 9.

    Zimin, S.P., Gorlachev, E.S., Amirov, I.I., Gerke, M.N., Zogg, H., and Zimin, D., Role of Threading Dislocations during Treatment of PbTe Films in Argon Plasma, Semicond. Sci. Technol., 2007, vol. 22, no. 8, pp. 929–932.

    Article  Google Scholar 

  10. 10.

    Zimin, S.P., Bogoyavlenskaya, E.A., Gorlachev, E.S., Naumov, V.V., Zimin, D.S., Zogg, H., and Arnold, M., Structural Properties of Pb1 − x EuxSe/CaF2/Si(111), Semicond. Sci. Technol., 2007, vol. 22, no. 12, pp. 1317–1322.

    Article  Google Scholar 

  11. 11.

    Alchalabi, K., Zimin, D., Kostorz, G., and Zogg, H., Self-assembled Semiconductor Quantum Dots with Nearly Uniform Sizes, Phys. Rev. Lett., 2003, vol. 90, no. 2, p. 026104-1–4.

    Article  Google Scholar 

  12. 12.

    Amirov, I.I., Berdnikov, A.E., and Izyumov, M.O., Etching of Resists in a Reactor with an RF Inductive Plasma Source, Mikroelektronika, 1998, vol. 27, no. 1, pp. 22–27 [Russ. Microelectron. (Engl. Transl.), vol. 27, no. 1, pp. 17–21].

    Google Scholar 

  13. 13.

    Orlikovskii, A.A., Plasma Processes in Micro-and Nanoelectronics. Part 2: New-Generation Plasmochemical Reactors in Microelectronics, Mikroelektronika, 1999, vol. 28, no. 6, pp. 415–426 [Russ. Microelectron. (Engl. Transl.), vol. 28, no. 6, pp. 355–364].

    Google Scholar 

  14. 14.

    Cardinaud, C., Peignon, M.-C., and Tessier, P.-Y., Plasma Etching: Principles, Mechanisms, Application to Micro-and Nano-technologies, Appl. Surf. Sci., 2000, vol. 164, pp. 72–83.

    Article  Google Scholar 

  15. 15.

    Zogg, H., Maissen, C., Blunier, S., Teodoropol, S., Overney, R.M., Richmond T., and Tomm, J.W., Thermal-Mismatch Strain Relaxation Mechanisms in Heteroepitaxial Lead Chalcogenide Layers on Si Substrates, Semicond. Sci. Technol., 1993, vol. 8, pp. S337–S341.

    Article  Google Scholar 

  16. 16.

    Lieberman, M.A., Spherical Shell Model of an Asymmetric RF Discharge, J. Appl. Phys., 1989, vol. 65, no. 11, pp. 4186–4191.

    Article  Google Scholar 

  17. 17.

    Amirov, I.I., Reactive Ion Etching of Silicon or Silicon Oxide in Multicomponent Plasmas, in Issledovanie tekhnologicheskikh protsessov i priborov mikroelektroniki (Studies on Microelectronic Device and Process Technologies), Moscow: Nauka, 1997, pp. 19–36.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. P. Zimin.

Additional information

Original Russian Text © S.P. Zimin, E.S. Gorlachev, I.I. Amirov, M.N. Gerke, 2008, published in Mikroelektronika, 2008, Vol. 37, No. 3, pp. 200–212.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zimin, S.P., Gorlachev, E.S., Amirov, I.I. et al. Submicrometer- and nanometer-structure formation on the surface of epitaxial IV–VI semiconductor films by Ar-plasma treatment. Russ Microelectron 37, 175–186 (2008).

Download citation

PACS numbers

  • 52.77.Bn