Russian Microelectronics

, Volume 37, Issue 3, pp 175–186 | Cite as

Submicrometer- and nanometer-structure formation on the surface of epitaxial IV–VI semiconductor films by Ar-plasma treatment

  • S. P. ZiminEmail author
  • E. S. Gorlachev
  • I. I. Amirov
  • M. N. Gerke
Micro- and Nanofabrication Technologies


A method is presented for fabricating submicrometer and nanometer structures on epitaxial films of a IV–VI compound semiconductor on a Si(111) substrate by sputtering with an RF-induction Ar plasma. The role is identified of threading dislocations and terraces on the film surface in the formation of submicrometer and nanometer hillocks. The relationship is determined of sputtering parameters to the RF bias and process time. The self-formation of submicrometer hillocks is traced to dislocation exit sites being masked by Al-containing components.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hung, S.C., Su, Y.K., Chang, S.J., Chen, S.C., Ji, L.W., Fang, T.H., Tu, L.W., and Chen, M., Self-formation of GaN Hollow Nanocolumns by Inductively Coupled Plasma Etching, Appl. Phys. A, 2005, vol. 80, pp. 1607–1610.CrossRefGoogle Scholar
  2. 2.
    Milekhin, A.G., Meijers, R.J., Richter, T., Calarco, R., Montanari, S., Luth, H., Paez Sierra, B.A., and Zahn, D.R.T., Raman Scattering Study of GaN Nanostructures Obtained by Bottom-Up and Top-Down Approaches, J. Phys.: Condens. Matter, 2006, vol. 18, pp. 5825–5834.CrossRefGoogle Scholar
  3. 3.
    Yoshida, H., Urushido, T., Miyake, H., and Hiramatsu, K., Formation of GaN Self-organized Nanotips by Reactive Ion Etching, Jpn. J. Appl. Phys., Part 1, 2001, vol. 40, no. 12A, pp. L1301–L1304.CrossRefGoogle Scholar
  4. 4.
    Furst, J., Pascher, H., Schwarzl, T., Boberl, M., Springholz, G., Bauer, G., and Heiss, W., Continuous-Wave Emission from Midinfrared IV–VI Vertical-Cavity Surface-Emitting Lasers, Appl. Phys. Lett., 2004, vol. 84,no. 17, pp. 3268–3270.CrossRefGoogle Scholar
  5. 5.
    Olkhovets, A., Hsu, R.-C., Lipovskii, A., and Wise, F.W., Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots, Phys. Rev. Lett., 1998, vol. 81, no. 16, pp. 3539–3542.CrossRefGoogle Scholar
  6. 6.
    Wise, F.W., Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement, Acc. Chem. Res., 2000, vol. 33, pp. 773–780.CrossRefGoogle Scholar
  7. 7.
    Grabecki, G., Wrobel, J., Dietl, T., Janik, E., Aleszkiewicz, M., Papis, E., Kaminska, E., Piotrowska, A., Springholz, G., and Bauer, G., PbTe—A New Medium for Quantum Ballistic Devices, Physica E, 2006, vol. 34, pp. 560–563.CrossRefGoogle Scholar
  8. 8.
    Schwarzl, T., Heiss, W., Kocher-Oberlehner, G., and Springholz, G., CH4/H2 Plasma Etching of IV–VI Semiconductor Nanostructures, Semicond. Sci. Technol., 1999, vol. 14, no. 2, pp. 11–14.CrossRefGoogle Scholar
  9. 9.
    Zimin, S.P., Gorlachev, E.S., Amirov, I.I., Gerke, M.N., Zogg, H., and Zimin, D., Role of Threading Dislocations during Treatment of PbTe Films in Argon Plasma, Semicond. Sci. Technol., 2007, vol. 22, no. 8, pp. 929–932.CrossRefGoogle Scholar
  10. 10.
    Zimin, S.P., Bogoyavlenskaya, E.A., Gorlachev, E.S., Naumov, V.V., Zimin, D.S., Zogg, H., and Arnold, M., Structural Properties of Pb1 − xEuxSe/CaF2/Si(111), Semicond. Sci. Technol., 2007, vol. 22, no. 12, pp. 1317–1322.CrossRefGoogle Scholar
  11. 11.
    Alchalabi, K., Zimin, D., Kostorz, G., and Zogg, H., Self-assembled Semiconductor Quantum Dots with Nearly Uniform Sizes, Phys. Rev. Lett., 2003, vol. 90, no. 2, p. 026104-1–4.CrossRefGoogle Scholar
  12. 12.
    Amirov, I.I., Berdnikov, A.E., and Izyumov, M.O., Etching of Resists in a Reactor with an RF Inductive Plasma Source, Mikroelektronika, 1998, vol. 27, no. 1, pp. 22–27 [Russ. Microelectron. (Engl. Transl.), vol. 27, no. 1, pp. 17–21].Google Scholar
  13. 13.
    Orlikovskii, A.A., Plasma Processes in Micro-and Nanoelectronics. Part 2: New-Generation Plasmochemical Reactors in Microelectronics, Mikroelektronika, 1999, vol. 28, no. 6, pp. 415–426 [Russ. Microelectron. (Engl. Transl.), vol. 28, no. 6, pp. 355–364].Google Scholar
  14. 14.
    Cardinaud, C., Peignon, M.-C., and Tessier, P.-Y., Plasma Etching: Principles, Mechanisms, Application to Micro-and Nano-technologies, Appl. Surf. Sci., 2000, vol. 164, pp. 72–83.CrossRefGoogle Scholar
  15. 15.
    Zogg, H., Maissen, C., Blunier, S., Teodoropol, S., Overney, R.M., Richmond T., and Tomm, J.W., Thermal-Mismatch Strain Relaxation Mechanisms in Heteroepitaxial Lead Chalcogenide Layers on Si Substrates, Semicond. Sci. Technol., 1993, vol. 8, pp. S337–S341.CrossRefGoogle Scholar
  16. 16.
    Lieberman, M.A., Spherical Shell Model of an Asymmetric RF Discharge, J. Appl. Phys., 1989, vol. 65, no. 11, pp. 4186–4191.CrossRefGoogle Scholar
  17. 17.
    Amirov, I.I., Reactive Ion Etching of Silicon or Silicon Oxide in Multicomponent Plasmas, in Issledovanie tekhnologicheskikh protsessov i priborov mikroelektroniki (Studies on Microelectronic Device and Process Technologies), Moscow: Nauka, 1997, pp. 19–36.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • S. P. Zimin
    • 1
    Email author
  • E. S. Gorlachev
    • 1
  • I. I. Amirov
    • 2
  • M. N. Gerke
    • 3
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Institute of Microelectronics and InformaticsRussian Academy of SciencesYaroslavlRussia
  3. 3.Vladimir State UniversityVladimirRussia

Personalised recommendations