Skip to main content
Log in

Complement to Hölder’s Inequality for Multiple Integrals. II

  • MATHEMATICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

This article is the second and final part of my work published in the previous issue of the journal. The main result of the article is the statement that if the functions γ1\({{L}^{{{{p}_{1}}}}}({{\mathbb{R}}^{n}})\), …, γm\({{L}^{{{{p}_{m}}}}}({{\mathbb{R}}^{n}})\), where m \( \geqslant \) 2, and the numbers p1, …, pm ∈ (1, +∞] are such that \(\frac{1}{{{{p}_{1}}}}\) + … + \(\frac{1}{{{{p}_{m}}}}\) < 1 and the nonresonance condition (the notion introduced in the previous article for functions from the spaces \({{L}^{p}}({{\mathbb{R}}^{n}})\), p ∈ (1, +∞]) is satisfied, then \({{\sup }_{{a,b \in {{\mathbb{R}}^{n}}}}}\left| {\int_{[a,b]} {\prod\nolimits_{k = 1}^m {[{{\gamma }_{k}}(\tau ) + \Delta {{\gamma }_{k}}(\tau )]d\tau } } } \right|\) \(\leqslant \) \(C\prod\nolimits_{k = 1}^m {{{{\left\| {{{\gamma }_{k}} + \Delta {{\gamma }_{k}}} \right\|}}_{{L_{{{{h}_{k}}}}^{{{{p}_{k}}}}({{\mathbb{R}}^{n}})}}}} \), where [a, b] is an n-dimensional parallelepiped, the constant C > 0 is independent of the functions Δγk\(L_{{{{h}_{k}}}}^{{{{p}_{k}}}}({{\mathbb{R}}^{n}})\), and \(L_{{{{h}_{k}}}}^{{{{p}_{k}}}}({{\mathbb{R}}^{n}})\)\({{L}^{{{{p}_{k}}}}}({{\mathbb{R}}^{n}})\), 1 \(\leqslant \) k \(\leqslant \) m, are some specially constructed normed spaces. In addition, a boundedness criterion for the integral of the product of functions over a subset of \({{\mathbb{R}}^{n}}\) is given in terms of fulfillment of some nonresonance condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. F. Ivanov, “Complement to the Holder inequality for multiple integrals: I,” Vestn. St. Petersburg Univ.: Math. 55, 174–185 (2022). https://doi.org/10.1134/S1063454122020066

    Article  MATH  Google Scholar 

  2. N. Bourbaki, Éléments de Mathématique, Vol. 6: Intégration (Hermann & Cie, Paris, 1956; Nauka, Moscow, 1967).

  3. S. G. Krein, Functional Analysis (Nauka, Moscow, 1972), in Ser.: The Reference Mathematical Library [in Russian].

  4. I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. 1: Properties and Operations (Fizmatlit, Moscow, 1959; American Mathematical Society, Providence, R.I., 1964).

  5. V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1979; Mir, Moscow, 1979).

Download references

ACKNOWLEDGMENTS

I am grateful to Professor N. A. Shirokov for his interest in the study and valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Ivanov.

Additional information

Translated by I. Nikitin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, B.F. Complement to Hölder’s Inequality for Multiple Integrals. II. Vestnik St.Petersb. Univ.Math. 55, 396–405 (2022). https://doi.org/10.1134/S1063454122040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454122040100

Keywords:

Navigation