Skip to main content
Log in

Numerical Simulations of Shock Waves in Viscous Carbon Dioxide Flows Using Finite Volume Method

  • MECHANICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

An efficient numerical tool for studying shock waves in viscous carbon dioxide flows is proposed. The developed theoretical model is based on the kinetic theory formalism and is free of common limitations such as constant specific heat ratio, approximate analytical expressions for thermodynamic functions and transport coefficients. The thermal conductivity, viscosity and bulk viscosity coefficients are expressed in terms of temperature, collision integrals and internal energy relaxation times. Precomputed in the wide temperature range thermodynamic functions and transport coefficients are implemented to the numerical code which is used for the simulations of the shock wave structure. Including the bulk viscosity to the kinetic model results in the increasing shock width and improves the agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, UK, 1994).

    Google Scholar 

  2. S. Kosuge and K. Aoki, “Shock-wave structure for a polyatomic gas with large bulk viscosity,” Phys. Rev. Fluids 3, 023401 (2018). https://doi.org/10.1103/PhysRevFluids.3.023401

    Article  Google Scholar 

  3. M. Timokhin, H. Struchtrup, A. Kokhanchik, and Ye. Bondar, “Different variants of R13 moment equations applied to the shock-wave structure,” Phys. Fluids 29, 037105 (2017). https://doi.org/10.1063/1.4977978

    Article  Google Scholar 

  4. E. Kustova, M. Mekhonoshina, and A. Kosareva, “Relaxation processes in carbon dioxide,” Phys. Fluids 31, 046104 (2019). https://doi.org/10.1063/1.5093141

    Article  Google Scholar 

  5. T. G. Elizarova, A. A. Khokhlov, and S. Montero, “Numerical simulation of shock wave structure in nitrogen,” Phys. Fluids 19, 068102 (2007). https://doi.org/10.1063/1.2738606

    Article  MATH  Google Scholar 

  6. A. V. Chikitkin, B. V. Rogov, G. A. Tirsky, and S. V. Utyuzhnikov, “Effect of bulk viscosity in supersonic flow past spacecraft,” Appl. Numer. Math. 93, 47–60 (2015). https://doi.org/10.1016/j.apnum.2014.01.004

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Alekseev, A. Kosareva, E. Kustova, and E. Nagnibeda, “Various continuum approaches for studying shock wave structure in carbon dioxide,” in Proc. 8th Polyakhov’s Reading (Int. Sci. Conf. on Mechanics, Saint Petersburg, Russia, Jan. 29 – Feb. 2,2018) (American Institute of Physics, Melville, NY, 2018), in Ser.: AIP Conference Proceedings, Vol. 1959, paper No. 060001. https://doi.org/10.1063/1.5034662.

  8. I. Alekseev, A. Kosareva, E. Kustova, and E. Nagnibeda, “Shock waves in carbon dioxide: Simulations using different kinetic-theory models,” in Proc. 31st Int. Symp. on Rarefied Gas Dynamics (RGD31), Glasgow, UK, July 23–27,2018 (American Institute of Physics, Melville, NY, 2018), in Ser.: AIP Conference Proceedings, Vol. 2132, paper No. 060005. https://doi.org/10.1063/1.5119545.

  9. M. S. Cramer, “Numerical estimates for the bulk viscosity of ideal gases,” Phys. Fluids 24, 066102 (2012). https://doi.org/10.1063/1.4729611

    Article  Google Scholar 

  10. Y. Wang, W. Ubachs, and W. van de Water, “Bulk viscosity of CO2 from Rayleigh–Brillouin light scattering spectroscopy at 532 nm,” J. Chem. Phys. 150, 154502 (2019). https://doi.org/10.1063/1.5093541

    Article  Google Scholar 

  11. I. V. Alekseev and E. V. Kustova, “Shock wave structure in CO2 taking into account bulk viscosity,” Vestn. S.‑Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 4(62), 642–653 (2017). https://doi.org/10.21638/11701/spbu01.2017.412

    Article  Google Scholar 

  12. E. A. Nagnibeda and E. V. Kustova, Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes (S.-Peterb. Gos. Univ., St. Petersburg, 2003; Springer-Verlag, Berlin, 2009).

  13. J. Parker, “Rotational and vibrational relaxation in diatomic gases,” Phys. Fluids 2, 449 (1959). https://doi.org/10.1063/1.1724417

    Article  MathSciNet  Google Scholar 

  14. S. A. Losev, P. V. Kozlov, L. A. Kuznetsova, V. N. Makarov, Yu. V. Romanenko, S. T. Surzhikov, and G. N. Zalogin, “Radiation of a mixture CO2–N2–Ar in shock waves: Experimental and modeling,” in Proc. 3rd Eur. Symp. on Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, Nov. 24–26,1998 (European Space Agency, Noordwijk, 1999), pp. 437–444.

  15. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  16. K. Volkov, V. Emelyanov, A. Karpenko, P. Smirnov, and I. Teterina, “Implementation of a finite volume method and calculation of flows of a viscous compressible gas on graphics processor units,” Vychisl. Metody Programm. 14, 183–194 (2013).

    Google Scholar 

  17. H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam,” J. Fluid. Mech. 74, 97–513 (1976). https://doi.org/10.1017/S0022112076001912

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project nos. 19-31-90036 and 18-01-00493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Alekseev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, I., Kustova, E. Numerical Simulations of Shock Waves in Viscous Carbon Dioxide Flows Using Finite Volume Method. Vestnik St.Petersb. Univ.Math. 53, 344–350 (2020). https://doi.org/10.1134/S1063454120030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454120030024

Keywords:

Navigation