Skip to main content
Log in

The Genetic Diversity of mtDNA of Apostichopus japonicus (Selenka, 1867) (Echinodermata: Holothuroidea) in Peter the Great Gulf, Sea of Japan

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The genetic diversity of the Far Eastern sea cucumber Apostichopus japonicus (Selenka, 1867), which lives in Peter the Great, Sea of Japan, has been studied. Five samples were analyzed using the mitochondrial DNA’s COI gene fragment. A total of 16 haplotypes were identified, with high haplotype diversity (0.86767 ± 0.01800) and low nucleotide diversity (0.00759 ± 0.00025). The results using AMOVA and pairwise Fst did not reveal significant genetic differences between the samples from Peter the Great Gulf. Based on the data we obtained and the structure of the haplotype network, it was suggested that the Far Eastern sea cucumber lives in nonequilibrium conditions. This relates to the uneven distribution of juveniles, depending on the hydrological regime, the type of soil and the development of mariculture in the water area, as well as a significant illegal catch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Levin, V.S., Dalnevostochnyy trepang: biologiya, promysel, vosproizvodstvo (Far Eastern Sea Cucumber: Biology, Harvesting, Reproduction), St. Petersburg: Goland, 2000.

  2. Lysenko, V.N., Zharikov, V.V., and Lebedev, A.M., The current status of populations of the sea cucumber Apostichopus japonicus (Selenka, 1867) in the Far Eastern Marine Reserve, Russ. J. Mar. Biol., 2018, vol. 44, no. 2, pp. 164–171.

    Article  Google Scholar 

  3. Selin, N.I., Vertical distribution of the Far East Trepang Apostichopus japonicus in Vostok Bay, Sea of Japan, Russ. J. Mar. Biol., 2001, vol. 27, pp. 256–258.

    Article  Google Scholar 

  4. Terekhova, V.E. and Belkova, N.L., Identification of opportunistic pathogens of sea cucumber (Apostichopus japonicus) cultivated in Primorsky Territory, Voda: Khim. Ekol., 2016, no. 1, pp. 36–42.

  5. Adachi, K., Okumura, S., and Moriyama, S., Genetic structure of Japanese sea cucumbers (Apostichopus japonicus) along the Sanriku coast supports the effect of earthquakes and related tsunamis, Genetica, 2018, vol. 146, no. 6, pp. 497−503. https://doi.org/10.1007/s10709-018-0041-z

    Article  PubMed  Google Scholar 

  6. Avise, J.C., Phylogeography: The History and Formation of Species, Harvard: Harvard Univ. Press, 2000.

  7. Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37−48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  8. Chang, Y., Feng, Z., Yu, J., and Ding, J., Genetic variability analysis in five populations of the sea cucumber Stichopus (Apostichopus) japonicus from China, Russia, South Korea and Japan as revealed by microsatellite markers, Mar. Ecol., 2009, vol. 30, pp. 455−461. https://doi.org/10.1111/j.1439-0485.2009.00292.x

    Article  CAS  Google Scholar 

  9. Chen, L. and Yang, J., Microsatellite genetic variation in wild and hatchery populations of the sea cucumber (Apostichopus japonicus Selenka) from northern China, Aquacult. Res., 2008, vol. 39, pp. 1541−1549. https://doi.org/10.1111/j.1365-2109.2008.02027.x

    Article  Google Scholar 

  10. Dong, Y., Li, Q., Zhong, X., and Kong L., Development of gene-derived SNP markers and their application for the assessment of genetic diversity in wild and cultured populations in sea cucumber, Apostichopus japonicas, J. World Aquacult. Soc., 2016, vol. 47, no. 6, pp. 873−888. https://doi.org/10.1007/s12686-013-9858-z

    Article  CAS  Google Scholar 

  11. Du, H., Bao, Z., Yan J., et al., Development of 101 gene-based single nucleotide polymorphism markers in sea cucumber, Apostichopus japonicas, Int. J. Mol. Sci., 2012, vol. 13, pp. 7080−7097. https://doi.org/10.3390/ijms13067080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edgar, R.C., MUSCLE: A multiple sequence alignment method with reduced time and space complexity, BMC Bioinf., 2004, vol. 5, p. 113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  13. Excoffier, L. and Lischer, H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564−567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  14. Excoffier, L., Smouse, P., and Quattro, J., Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data, Genetics, 1992, vol. 131, pp. 479−491. https://doi.org/10.1093/genetics/131.2.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felsenstein, J., Confidence limits on phylogenies: An approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb004

  16. Fu, Y.X., Statistical test of neutrality of mutation against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, no. 2, pp. 915–925. https://doi.org/10.1093/genetics/147.2.915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamamoto, K., Soliman, T., Poliseno, A., Iria Fernandez-Silva, I., and Reimer, J.D., Higher genetic diversity of the common sea cucumber Holothuria (Halodeima) atra in marine protected areas of the Central and Southern Ryukyu Islands, Front. Conserv. Sci., 2021, vol. 2, p. 736633. https://doi.org/10.3389/fcosc.2021.736633

    Article  Google Scholar 

  18. Harpending, R.C., Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution, Hum. Biol., 1994, vol. 66, pp. 591–600.

    CAS  PubMed  Google Scholar 

  19. Hedgecock, D. and Pudovkin, A.I., Sweepstakes reproductive success in highly fecund marine fish and shellfish: A review and commentary, Bull. Mar. Sci., 2011, vol. 87, no. 4, pp. 971–1002. https://doi.org/10.5343/bms.2010.1051

    Article  Google Scholar 

  20. Hoareau, T.B. and Boissin, E., Design of phylum-specific hybrid primers for DNA barcoding: Addressing the need for efficient COI amplification in the Echinodermata, Mol. Ecol. Resour., 2010, vol. 10, pp. 960–967. https://doi.org/10.1111/j.1755-0998.2010.02848.x

    Article  CAS  PubMed  Google Scholar 

  21. Kanno, M., Li, Q., and Kijima, A., Microsatellite analysis of Japanese sea cucumber, Stichopus (Apostichopus) japonicus, supports reproductive isolation in color variants, Mar. Biotechnol., 2006, vol. 8, pp. 672−-685. https://doi.org/10.1007/s10126-006-6014-8

  22. Karl, S.A., Toonen, R.J., Grant, W.S., and Bowen, B.W., Common misconceptions in molecular ecology: Echoes of the modern synthesis, Mol. Ecol., 2012, vol. 21, pp. 4171–4189. https://doi.org/10.1111/j.1365-294X.2012.05576.x

    Article  CAS  PubMed  Google Scholar 

  23. Kim, M., Choi, T., and An, H.S., Population genetic structure of sea cucumber, Stichopus japonicus in Korea using microsatellite markers, Aquacult. Res., 2008, vol. 39, pp. 1038−1045. https://doi.org/10.1111/j.1365-2109.2008.01962.x

    Article  CAS  Google Scholar 

  24. Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, no. 2, pp. 111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  25. Marjoram, P. and Donnelly, P., Pairwise comparisons of mitochondrial DNA sequences in subdivided populations and implications for early human evolution, Genetics, 1994, vol. 136, pp. 673–683. https://doi.org/10.1093/genetics/136.2.673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nehemia, A. and Kochzius, M., Reduced genetic diversity and alteration of gene flow in a fiddler crab due to mangrove degradation, PLoS One, 2017, vol. 12, p. 8. https://doi.org/10.1371/journal.pone.0182987

    Article  CAS  Google Scholar 

  27. Oh, G.W., Ko, S.C., and Lee, D.H., et al., Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): A review, Fish. Aquat. Sci., 2017, vol. 20, p. 28. https://doi.org/10.1186/s41240-017-0071-y

    Article  CAS  Google Scholar 

  28. Palumbi, S.R. and Wilson, A.C., Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis, Evolution, 1990, vol. 44, pp. 403–415. https://doi.org/10.1111/j.1558-5646.1990.tb05208.x

    Article  PubMed  Google Scholar 

  29. Purcell, S.W., Samyn, Y., and Conand, C., Commercially important sea cucumbers of the world, in FAO Species Catalogue for Fishery Purposes No. 6, De Angelis, N. and Lovatelli, A., Eds., Rome, 2012.

    Google Scholar 

  30. Qiu, T., Zhang, T., Hamel, J.-F., and Mercier, A., Development, settlement, and post-settlement growth, in The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture, Yang, H., Hamel, J.-F., and Mercier, A., Eds., Amsterdam: Elsevier, 2015, pp. 111−131. https://doi.org/10.1016/B978-0-12-799953-1.00008-8

  31. Ray, N., Currat, M., and Excoffier, L., Intra-deme molecular diversity in spatially expanding populations, Mol. Biol. Evol., 2003, vol. 20, pp. 76−86. https://doi.org/10.1093/molbev/msg009

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigues, F., Valente, S., and Gonzalez-Wanguemert, M., Genetic diversity across geographical scales in marine coastal ecosystems: Holothuria arguinensis a model species, J. Exp. Mar. Biol. Ecol., 2015, vol. 463, pp. 158–167. https://doi.org/10.1016/j.jembe.2014.12.006

    Article  Google Scholar 

  33. Rogers, A.R., Genetic evidence for a Pleistocene population expansion, Evolution, 1995, vol. 49, pp. 608−615. https://doi.org/10.1111/j.1558-5646.1995.tb02297.x

    Article  PubMed  Google Scholar 

  34. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., and Ramos-Onsins, S.E., et al., DnaSP 6: DNA sequence polymorphism analysis of large datasets, Mol. Biol. Evol., 2017, vol. 34, no. 12, pp. 3299–3302. https://doi.org/10.1093/molbe v/msx248

  35. Schneider, S. and Excoffier, L., Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA, Genetics, 1999, vol. 152, pp. 1079−1089. https://doi.org/10.1093/genetics/152.3.1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simões, T.D., Azevedo, E., Silva, F.H., et al., Ecological traits of sea cucumbers with commercial relevance from the north-eastern Atlantic coast, Proc. Mar. Sci. Conf.International Meeting on Marine Research 2018,”Peniche, Portugal, 2019. https://doi.org/10.3389/conf.FMARS.2018.06.00147

  37. So, J., Uthicke, S., Hamel, J.-F., and Mercier, A., Genetic population structure in a commercial marine invertebrate with long-lived lecithotrophic larvae: Cucumaria frondosa (Echinodermata: Holothuroidea), Mar. Biol., 2011, vol. 158, pp. 859−870. https://doi.org/10.1007/s00227-010-1613-3

    Article  Google Scholar 

  38. Soliman, T., Fernandez-Silva, I., and Reimer, J.D., Genetic population structure and low genetic diversity in the over-exploited sea cucumber Holothuria edulis Lesson, 1830 (Echinodermata: Holothuroidea) in Okinawa Island, Conserv. Genet., 2016, vol. 17, pp. 811–821. https://doi.org/10.1007/s10592-016-0823-8

    Article  Google Scholar 

  39. Soliman, T., Kanno, M., Kijima, A., and Yamazaki, Y., Population genetic structure and gene flow in the Japanese sea cucumber Apostichopus japonicus across Toyama Bay, Japan, Fish. Sci., 2012, vol. 78, pp. 775−783. https://doi.org/10.1007/s12562-012-0509-1

    Article  CAS  Google Scholar 

  40. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585–595. https://doi.org/10.1093/genetics/123.3.585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tamura, K., Stecher, G., and Kumar, S., MEGA11: Molecular Evolutionary Genetics Analysis version 11, Mol. Biol. Evol., 2021, vol. 38, pp. 3022−3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Truett, G.E., Preparation of Genomic DNA from Animal Tissues, in DNA Sequencing II: Optimizing Preparation and Cleanup, Kieleczawa, J., Ed., Sudbury: Jones and Bartlett, 2006, pp. 33−46.

    Google Scholar 

  43. Tyler, P.A., Young, C.M.D., Billett, S.M., and Giles, L.A., Pairing behaviour, reproduction and diet in the deep-sea holothurian genus Paroriza (Holothurioidea: Synallactidae), J. Mar. Biol. Assoc. U. K., 1992, vol. 72, no. 2, pp. 447–462. https://doi.org/10.1017/S0025315400037814

    Article  Google Scholar 

  44. Uthicke, S. and Benzie, J.A.H., Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from the Indo-pacific, Mol. Ecol., 2003, vol. 12, pp. 2635–2648. https://doi.org/10.1046/j.1365-294X.2003.01954.x

    Article  CAS  PubMed  Google Scholar 

  45. Valente, S., Serrão, E.A., and González-Wanguemert, M., West versus East Mediterranean Sea: Origin and genetic differentiation of the sea cucumber Holothuria polii, Mar. Ecol., 2014, vol. 36, no. 3, pp. 485−495. https://doi.org/10.1111/maec.12156

    Article  CAS  Google Scholar 

  46. Watts, R.J., Johnson, M.S., and Black, R., Effects of recruitment on genetic patchiness in the urchin Echinometra mathaei in Western Australia, Mar. Biol., 1990, vol. 105, pp. 145–151.

    Article  Google Scholar 

  47. Yagodina, V.D., Bondar, E.I., and Brykov, V.A., Genetic variability and population structure of the Japanese sea cucumber, Apostichopus japonicus Selenka, 1867 revealed by microsatellites in Peter the Great Gulf, Sea of Japan, Mar. Biodiversity, 2022, vol. 52, p. 40. https://doi.org/10.1007/s12526-022-01278-0

    Article  Google Scholar 

  48. Yan, J., Jing, J., Mu, X., Du, H., Tian, M., Wang, S., et al., A genetic linkage map of the sea cucumber (Apostichopus japonicus) based on microsatellites and SNPs, Aquaculture, 2013, vols. 404−405, pp. 1–7. https://doi.org/10.1016/j.aquaculture.2013.04.011

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.I. Bondar, A.D. Kukhlevsky (Zhirmunsky National Scientific Center of Marine Biology FEB RAS) and A.A. Semenchenko (Institute of the World Ocean, the Far Eastern Federal University) for help in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Yagodina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national and/or institutional guidelines for the care and use of animals have been followed.

Additional information

Translated by V. Petrakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagodina, V.D., Brykov, V.A. The Genetic Diversity of mtDNA of Apostichopus japonicus (Selenka, 1867) (Echinodermata: Holothuroidea) in Peter the Great Gulf, Sea of Japan. Russ J Mar Biol 49, 38–46 (2023). https://doi.org/10.1134/S1063074023010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074023010108

Keywords:

Navigation