Skip to main content
Log in

The Composition and Kinetics of the Hemocyte Population in the Mussel Crenomytilus grayanus (Dunker, 1853)

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Based on light microscopy data, hemocytes of Crenomytilus grayanus were classified into five morphological types common for Bivalvia. In the stage of sexual inertia (late October), the proportions of the cell types are as follows: (1) hemoblasts (0.2 ± 0.1%), (2) hyalinocytes (1.9 ± 0.3%), and also (3) basophilic (10.9 ± 1.4%), (4) neutrophilic (13.3 ± 3.0%), and (5) acidophilic (74.1 ± 2.9%) granulocytes. All hemocytes were divided into four groups on the basis of their size (FSC) and complexity (SSC) by flow cytometry. Correlation analysis has shown that R1 corresponds to hemoblasts, R2 to hyalinocytes, and R4 to granulocytes and their acidophilic forms. However, these correlations are not observed in the summer season. The hemocyte morphology and quantitative relationships between their structural types confirm Mix’s hematopoietic model, which postulates histogenetic continuity of hyalinocytes and granulocytes. The arrangement of cells in the light-scatter dot plots (FSC vs. SSC) indicates their maturity stage; it depends on functional status and may change with disturbances of the mitotic cycle. The hemocyte population in C. grayanus shows a low rate of renewal and a dominance of acidophilic granulocytes (up to 99% of all cells in the sexual inertia stage), which suggests a strategy targeted at long-term maintenance of highly differentiated cells and is consistent with the long life expectancy of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Anisimova, A.A., Flow cytometric and light microscopic identification of hemocyte subpopulations in Modiolus kurilensis (Bernard, 1983) (Bivalvia: Mytilidae), Russ. J. Mar. Biol., 2012, vol. 38, no. 5, pp. 406–415.

    Article  Google Scholar 

  2. Anisimova, A.A., Morphofunctional parameters of hemocytes in the assessment of the physiological status of bivalves, Russ. J. Mar. Biol., 2013, vol. 39, no. 6, pp. 381–391.

    Article  CAS  Google Scholar 

  3. Anisimova, A.A., Ponomareva, A.L., Grinchenko, A.V., et al., The composition and seasonal dynamics of the hemocyte cell population in the clams Corbicula japonica Prime (1864) of the Kievka River (the basin of the Sea of Japan), Russ. J. Mar. Biol., 2017, vol. 43, no. 2, pp. 156–163.

    Article  CAS  Google Scholar 

  4. Dzyuba, S.M. and Romanova, L.G., Morphology of amoebocytes in the hemolymph of Japanese scallop, Tsitologiya, 1992, vol. 34, no. 10, pp. 52–54.

    Google Scholar 

  5. Kavun, V.Ya. and Shul’kin, V.M., Changes in the microelement composition in organs and tissues of the bivalve Crenomytilus grayanus acclimatized in a biotope with long-term heavy metal contamination, Russ. J. Mar. Biol., 2005, vol. 31, no. 2, pp. 109–114.

    Article  CAS  Google Scholar 

  6. Kovalev, N.N., Kostetsky, E.Ya., Velansky, P.V., et al., The fatty acid composition of major membrane lipids of the mussel Crenomytilus grayanus (Dunker, 1853) (Bivalvia: Mytilidae) under chronic anthropogenic pollution: Evaluation of stability, Russ. J. Mar. Biol., 2019, vol. 45, no. 2, pp. 118–127.

    Article  CAS  Google Scholar 

  7. Yavnov, S.V., Atlas dvustvorchatykh mollyuskov dal’nevostochnykh morei Rossii (Atlas of Bivalve Mollusks from the Far Eastern Seas of Russia), Vladivostok: Dyuma, 2000.

  8. Allam, B., Ashton-Alcox, K.A., and Ford, S.E., Flow cytometric comparison of haemocytes from three species of bivalve molluscs, Fish Shellfish Immunol., 2002, vol. 13, no. 2, pp. 141–158.

    Article  CAS  Google Scholar 

  9. Andreyeva, A.Y., Efremova, E.S., and Kukhareva, T.A., Morphological and functional characterization of hemocytes in cultivated mussel (Mytilus galloprovincialis) and effect of hypoxia on hemocyte parameters, Fish Shellfish Immunol., 2019, vol. 89, pp. 361–367.

    Article  CAS  Google Scholar 

  10. Carballal, M.J., López, C., Azevedo, C., and Villalba, A., In vitro study of phagocytic ability of Mytilus galloprovincialis Lmk. haemocytes, Fish Shellfish Immunol., 1997, vol. 7, no. 6, pp. 403–416.

    Article  Google Scholar 

  11. Carballal, M.J., Villalba, A., and López, C., Seasonal variation and effects of age, food availability, size, gonadal development, and parasitism on the hemogram of Mytilus galloprovincialis, J. Invertebr. Pathol., 1998, vol. 72, no. 3, pp. 304–312.

    Article  CAS  Google Scholar 

  12. Cheng, T.C., Bivalves, in Invertebrate Blood Cells, Ratcliffe, N.A. and Rowley, A.E., Eds., London: Academic, 1981, vol. 2, pp. 233–300.

    Google Scholar 

  13. Cima, F. and Matozzo, V., Proliferation and differentiation of circulating haemocytes of Ruditapes philippinarum as a response to bacterial challenge, Fish Shellfish Immunol., 2018, vol. 81, pp. 73–82.

    Article  CAS  Google Scholar 

  14. Estrada, N., Velázquez, E., Rodríguez-Jaramillo, C., and Ascencio, F., Morphofunctional study of hemocytes from lions-paw scallop Nodipecten subnodosus, Immunobiology, 2013, vol. 218, no. 8, pp. 1093–1103.

    Article  CAS  Google Scholar 

  15. Farrington, J.W., Tripp, B.W., Tanabe, S., et al., Edward D. Goldberg’s proposal of “the Mussel Watch”: Reflections after 40 years, Mar. Pollut. Bull., 2016, vol. 110, pp. 501–510.

    Article  CAS  Google Scholar 

  16. Foley, D.A. and Cheng, T.C., Degranulation and other changes of molluscan granulocytes associated with phagocytosis, J. Invertebr. Pathol., 1977, vol. 29, no. 3, pp. 321–325.

    Article  CAS  Google Scholar 

  17. Galimany, E., Place, A.R., Ramón, M., et al., The effects of feeding Karlodinium veneficum (PLY # 103; Gymnodinium veneficum Ballantine) to the blue mussel Mytilus edulis, Harmful Algae, 2008, vol. 7, no. 1, pp. 91–98.

    Article  CAS  Google Scholar 

  18. García-García, E., Prado-Alvarez, M., Novoa, B., et al., Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families, Dev. Comp. Immunol., 2008, vol. 32, no. 6, pp. 637–653.

    Article  Google Scholar 

  19. Kavun, V.Y., Yurchenko, O.V., and Podgurskaya, O.V., Integrated assessment of the acclimation capacity of the marine bivalve Crenomytilus grayanus under naturally highly contaminated conditions: Subcellular distribution of trace metals and structural alterations of nephrocytes, Sci. Total Environ., 2020, vol. 734, art. ID 139015. https://doi.org/10.1016/j.scitotenv.2020.139015

    Article  CAS  PubMed  Google Scholar 

  20. Le Foll, F., Rioult, D., Boussa, S., and Pasquier, J., Characterisation of Mytilus edulis hemocyte subpopulations by single cell time-lapse motility imaging, Fish Shellfish Immunol., 2010, vol. 28, no. 2, pp. 372–386.

    Article  CAS  Google Scholar 

  21. Mateo, D.R., Spurmanis, A., Siah, A., et al., Changes induced by two strains of Vibrio splendidus in haemocyte subpopulations of Mya arenaria, detected by flow cytometry with LysoTracker, Dis. Aquat. Org., 2009, vol. 86, no. 3, pp. 253–262.

    Article  Google Scholar 

  22. Matozzo, V., Marin, M.G., Cima, F., and Ballarin, L., First evidence of cell division in circulating haemocytes from the Manila clam Tapes philippinarum, Cell Biol. Int., 2008, vol. 32, no. 7, pp. 865–868.

    Article  CAS  Google Scholar 

  23. Mix, M.C., A general model for leukocyte cell renewal in bivalve mollusks, Mar. Fish. Rev., 1976, vol. 38, no. 10, pp. 37–41.

    Google Scholar 

  24. Ottaviani, E., Franchini, A., Barbieri, D., and Kletsas, D., Comparative and morphofunctional studies on Mytilus galloprovincialis hemocytes: Presence of two aging-related hemocyte stages, Ital. J. Zool., 1998, vol. 65, no. 4, pp. 349–354.

    Article  Google Scholar 

  25. Parrino, V., Costa, G., Cannava, C., et al., Flow cytometry and micro-Raman spectroscopy: Identification of hemocyte populations in the mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) from Faro Lake and Tyrrhenian Sea (Sicily, Italy), Fish Shellfish Immunol., 2019, vol. 87, pp. 1–8.

    Article  CAS  Google Scholar 

  26. Piló, D., Carvalho, S., Pereira, P., et al., Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?, Sci. Total Environ., 2017, vol. 577, pp. 340–348.

    Article  Google Scholar 

  27. Rebelo, M.d.F., Figueiredo, E.d.S., Mariante, R.M., et al., New insights from the oyster Crassostrea rhizophorae on bivalve circulating hemocytes, PLoS One, 2013, vol. 8, no. 2, art. ID e57384. https://doi.org/10.1371/journal.pone.0057384

    Article  CAS  PubMed Central  Google Scholar 

  28. Renault, T., Immunotoxicological effects of environmental contaminants on marine bivalves, Fish Shellfish Immunol., 2015, vol. 46, no. 1, pp. 88–93.

    Article  CAS  Google Scholar 

  29. Renwrantz, L., Siegmund, E., and Woldmann, M., Variations in hemocyte counts in the mussel, Mytilus edulis: Similar reaction patterns occur in disappearance and return of molluscan hemocytes and vertebrate leukocytes, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2013, vol. 164, no. 4, pp. 629–637.

    Article  CAS  Google Scholar 

  30. Sendra, M., Carrasco-Braganza, M.I., Yeste, P.M., et al., Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis, Sci. Rep., 2020, vol. 10, art. ID 8637. https://doi.org/10.1038/s41598-020-65596-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sminia, T. and van der Knaap, W.P.W., Cells and molecules in molluscan immunology, Dev. Comp. Immunol., 1987, vol. 11, no. 1, pp. 17–28.

    Article  CAS  Google Scholar 

  32. Strahl, J. and Abele, D., Cell turnover in tissues of the long-lived ocean quahog Arctica islandica and the short-lived scallop Aequipecten opercularis, Mar. Biol., 2010, vol. 157, no. 6, pp. 1283–1292.

    Article  Google Scholar 

  33. Sun, J., Guo, Y., Wang, A., et al., Flow cytometric analysis of the defense functions of hemocytes from oyster (Crassostrea ariakensis), Int. J. Agric. Biol., 2018, vol. 20, pp. 1413‒1418.

    CAS  Google Scholar 

  34. Wootton, E.C., Dyrynda, E.A., and Ratcliffe, N.A., Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua), Fish Shellfish Immunol., 2003, vol. 15, no. 3, pp. 195–210.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to V.Ya. Kavun, a senior researcher of the Laboratory of Physiology, Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), for assistance in collecting the material and to A.V. Boroda, a senior researcher of the Laboratory of Cytotechnology, NSCMB FEB RAS, for organizing the work on a CytoFLEX flow cytometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anisimova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimova, A.A., Diagileva, M.N., Karusheva, O.A. et al. The Composition and Kinetics of the Hemocyte Population in the Mussel Crenomytilus grayanus (Dunker, 1853). Russ J Mar Biol 48, 256–265 (2022). https://doi.org/10.1134/S1063074022040022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074022040022

Keywords:

Navigation