Skip to main content
Log in

The Pumping Rate of the White Sea Sponge Halichondria panicea (Pallas, 1766) (Porifera: Demospongiae)

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The pumping rate of the White Sea sponge Halichondria panicea (Pallas, 1766) (Porifera: Demospongiae) was estimated under laboratory conditions. We used live specimens with a wet weight of 3.5 to 35.5 g and one to eight oscula. The pumping rate of a sponge was determined as the sum of pumping rates of all its oscula, which was calculated as the product of the maximum velocity of the excurrent flow from an osculum by the cross-sectional area of that osculum. The velocity was measured using a microthermistor sensor. The pumping rate of the sponge was found to be related to its weight by a power relationship with an exponent of approximately 3. Sponges weighing 25 g and over surpass in pumping activity solitary animals such as the bivalves Mytilus edulis and Hiatella arctica and the ascidian Styela rustica, in which the relationship is either a linear or power one, with an exponent less than one. The advantage of the sponge over solitary organisms seems to be due to its modular organization, which ensures not only a constant increase in the number and size of oscula as the individual grows, but probably also leads to a periodic restructuring of the irrigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ereskovsky, A.V., Some patterns of habitats and distribution of sponges in the littoral zone of Eastern Murman, Zool. Zh., 1994, vol. 73, no. 4, pp. 5−17.

    Google Scholar 

  2. Ereskovskii, A.V., Problems of coloniality, modularity, and individuality in sponges and special features of their morphogeneses during growth and asexual reproduction, Russ. J. Mar. Biol., 2003, vol. 29, pp. S46−S56.

    Article  Google Scholar 

  3. Lezin, P.A., Agat’eva, N.A., and Khalaman, V.V., A comparative study of the pumping activity of some fouling animals from the White Sea, Russ. J. Mar. Biol., 2006, vol. 32, no. 4, pp. 245−249.

    Article  Google Scholar 

  4. Plotkin, A.S., Ereskovsky, A.V., and Khalaman, V.V., The analysis of modular organization of Porifera using the White Sea sponge Polymastia mammillaris (Muller, 1806) (Demospongiae, Tetractinomorpha) as a model, Zh. Obshch. Biol., 1999, vol. 60, no. 1, pp. 26–28.

    Google Scholar 

  5. Plotkin, A.S., Railkin, A.I., Gerasimova, E.I., et al., Subtidal underwater rock communities of the White Sea: Structure and interaction with bottom flow, Russ. J. Mar. Biol., 2005, vol. 31, no. 6, pp. 335–343.

    Article  Google Scholar 

  6. Oshurkov, V.V., Suktsessii i dinamika epibentosnykh soobshchestv verkhnei sublitorali boreal’nykh vod (Successions and Dynamics of Epibenthic Communities from the Boreal Upper Subltidal Zone), Vladivostok: Dal’nauka, 2000.

  7. Khalaman, V.V., Fouling communities of mussel aquaculture installations in the White Sea, Russ. J. Mar. Biol., 2001, vol. 27, no. 4, pp. 227−237.

    Article  Google Scholar 

  8. Khalaman, V.V., Belyaeva, D.V., and Flyachinskaya, L.P., Effect of excretory-secretory products of some fouling organisms on settling and metamorphosis of the larvae of Styela rustica (Ascidiae), Russ. J. Mar. Biol., 2008, vol. 34, no. 3, pp. 170–173.

    Article  Google Scholar 

  9. Khalaman, V.V., Korchagina, N.M., and Komendantov, A.Yu., The impact of waterborne cues from conspecifics and other species on the larvae of Halichondria panacea Pallas, 1766 (Porifera: Demospongiae), Russ. J. Mar. Biol., 2014, vol. 40, no. 1, pp. 36–42.

    Article  Google Scholar 

  10. Khalaman, V.V. and Komendantov, A.Yu., Structure of fouling communities formed by Halichondria panicea (Porifera: Demospongiae) in the White Sea, Russ. J. Ecol., 2011, vol. 42, 493.

    Article  Google Scholar 

  11. Khalaman, V.V. and Komendantov, A.Yu., Experimental study of the ability of the sponge Halichondria panicea (Porifera: Demospongiae) to compete for a substrate in shallow-water fouling communities of the White Sea, Biol. Bull. Russ. Acad. Sci., 2016, vol. 43, no. 1, pp. 69−74.

    Article  Google Scholar 

  12. Khalaman, V.V., Sharov, A.N., Kholodkevich, S.V., et al., Influence of the White Sea sponge Halichondria panicea (Pallas, 1766) on physiological state of the blue mussel Mytilus edulis (Linnaeus, 1758), as evaluated by heart rate characteristics, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 3, pp. 225−232.

    Article  Google Scholar 

  13. Khodakovskaya, A.V., Fauna of sponges (Porifera) of Peter the Great Bay, Sea of Japan, Russ. J. Mar. Biol., 2005, vol. 31, no. 4, pp. 209−214.

    Article  Google Scholar 

  14. Chernyaev, M.Zh., Rodionov, I.A., and Selin, N.I., Water-pumping activity of the mussel Mytilus trossulus under different living conditions, Russ. J. Mar. Biol., 1998, vol. 24, no. 2, pp. 131−133.

    Google Scholar 

  15. Althoff, K., Schütt, C., Steffen, R., et al., Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: Harbor also for putatively toxic bacteria?, Mar. Biol., 1998, vol. 130, pp. 529−536.

    Article  Google Scholar 

  16. Barthel, D., On the ecophysiology of the sponge Halichondria panicea in Kel Bight. I. Substrate specificity, growth and reproduction, Mar. Ecol.: Prog. Ser., 1986, vol. 32, pp. 291–298.

    Article  Google Scholar 

  17. Barthel, D. and Wolfrath, R., Tissue sloughing in the sponge Halichondria panicea: A fouling organism prevents being fouled, Oecologia, 1989, vol. 78, pp. 357–360.

    Article  CAS  PubMed  Google Scholar 

  18. Comeau, L.A., Filgueira, R., Guyondet, T., and Sonier, R., The impact of invasive tunicates on the demand for phytoplankton in longline mussel farms, Aquaculture, 2015, vol. 441, pp. 95−105.

    Article  Google Scholar 

  19. Daigle, R.M. and Herbinger, C.M., Ecological interactions between the vase tunicate (Ciona intestinalis) and the farmed blue mussel (Mytilus edulis) in Nova Scotia, Canada, Aquat. Invasions, 2009, vol. 4, no. 1, pp. 177−187.

    Article  Google Scholar 

  20. Dalby, J.E. and Young, C.M., Variable effects of ascidian competitors on oysters in a Florida epifaunal community, J. Exp. Mar. Biol. Ecol., 1993, vol. 167, no. 1, pp. 47−57.

    Article  Google Scholar 

  21. Dijkstra, J., Sherman, H., and Harris, L.G., The role of colonial ascidians in altering biodiversity in marine fouling communities, J. Exp. Mar. Biol. Ecol., 2007, vol. 342, no. 1, pp. 169−171.

    Article  Google Scholar 

  22. Dubois, S., Orvain, F., Marin-Léal, J.C., et al., Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes, Mar. Ecol.: Prog. Ser., 2007, vol. 336, pp. 151−160.

    Article  CAS  Google Scholar 

  23. Dyrynda, P.E.J., Modular sessile invertebrates contain larvotoxic allelochemicals, Dev. Comp. Immunol., 1983, vol. 7, no. 4, pp. 621−624.

    Article  CAS  Google Scholar 

  24. Erpenbeck, D., Knowlton, A.L., Talbot, S.L., et al., A molecular comparison of Alaskan and North East Atlantic Halichondria panicea (Pallas 1766) (Porifera: Demospongiae) populations, Boll. Mus. Ist. Biol. Univ. Genova, 2004, vol. 68, pp. 319–325.

    Google Scholar 

  25. Frost, T.M., In situ measurements of clearance rates for the freshwater sponge Spongilla lacustris, Limnol. Oceanogr., 1978, vol. 23, no. 5, pp. 1034−1039.

    Article  Google Scholar 

  26. Goldstein, J., Riisgård, H.U., and Larsen, P.S., Exhalant jet speed of single-osculum explants of the demosponge Halichondria panicea and basic properties of the sponge-pump, J. Exp. Mar. Biol. Ecol., 2019, vol. 511, pp. 82−90.

    Article  Google Scholar 

  27. Hadas, E., Ilan, M., and Shpigel, M., Oxygen consumption by a coral reef sponge, J. Exp. Biol., 2008, vol. 211, no. 13, pp. 2185−2190.

    Article  CAS  PubMed  Google Scholar 

  28. Hartman, W.D. and Reiswig, H.M., The individuality of sponges, in Animal Colonies, Boardman, R.S., Cheetham, A.H., and Oliver, W.A., Eds., Stroudsburg: Dowden, Hutchinson and Ross, 1973, pp. 567−584.

    Google Scholar 

  29. Hoare, R. and Peattie, M.E., The sublittoral ecology of the menai strait: I. Temporal and spatial variation in the fauna and flora along a transect, Estuarine Coastal Mar. Sci., 1979, vol. 9, no. 6, pp. 663−675.

    Article  Google Scholar 

  30. Knowlton, A.S. and Highsmith, R.C., Convergence in the time-space continuum: A predator-prey interaction, Mar. Ecol.: Prog. Ser., 2000, vol. 197, pp. 285−291.

    Article  Google Scholar 

  31. Kobayashi, M. and Kitagawa, I., Likely microbial participation in the production of bioactive marine sponge chemical constituents, in Sponge Sciences: Multidisciplinary Perspectives, Tokyo: Springer, 1998, pp. 379–389.

    Google Scholar 

  32. Kumala, L., Riisgard, H.U., and Canfield, D.E., Osculum dynamics and filtration activity in small single-osculum explants of the demosponge Halichondria panicea, Mar. Ecol.: Prog. Ser., 2017, vol. 572, pp. 117−128.

    Article  CAS  Google Scholar 

  33. LaBarbera, M. and Vogel, S., An inexpensive thermistor flow meter for aquatic biology, Limnol. Oceanol., 1976, vol. 21, no. 5, pp. 750−756.

    Article  Google Scholar 

  34. Leblanc, A.R., Landry, T., and Miron, G., Fouling organisms of the blue mussel Mytilus edulis: Their effect on nutrient uptake and release, J. Shellfish Res., 2003, vol. 22, no. 3, pp. 633−638.

    Google Scholar 

  35. Leichter, J.J. and Witman, J.D., Water flow over subtidal rock walls: Relation to distributions and growth rates of sessile suspension feeders in the Gulf of Maine Water flow and growth rates, J. Exp. Mar. Biol. Ecol., 1997, vol. 209, nos. 1–2, pp. 293−307.

    Article  Google Scholar 

  36. Lesser, M.P., Shumway, S.E., Cucci, T., and Smith, J., Impact of fouling organisms on mussel rope culture: Interspecific competition for food among suspension-feeding invertebrates, J. Exp. Mar. Biol. Ecol., 1992, vol. 165, no. 1, pp. 91−102.

    Article  Google Scholar 

  37. Lohse, D.P., Relative strengths of competition for space and food in a sessile filter feeder, Biol. Bull., 2002, vol. 203, no. 2, pp. 173−180.

    Article  PubMed  Google Scholar 

  38. Marfenin, N.N., Sponges viewed in the light of up-to-date conception on coloniality, Berl. Geowiss. Abh., Reihe E, 1997, vol. 20, pp. 17−23.

    Google Scholar 

  39. Morganti, T.M., Ribes, M., Moskovich, R., et al., In situ pumping rate of 20 marine Demosponges is a function of osculum area, Front. Mar. Sci., 2021, vol. 8, 583188.

    Article  Google Scholar 

  40. Purushottama, G.B., Venkateshvaran, K., Pani Prasad, K., and Nalini, P., Bioactivities of extracts from the marine sponge Halichondria panicea, J. Venomous Anim. Toxins Incl. Trop. Dis., 2009, vol. 15, no. 3, pp. 444–459.

    Article  Google Scholar 

  41. Reiswig, H.M., In situ pumping activities of tropical Demospongiae, Mar. Biol., 1971, vol. 9, pp. 38−50.

    Article  Google Scholar 

  42. Riedl, R.J. and Machan, R., Hydrodynamic patterns in lotic intertidal sands and their bioclimatological implications, Mar. Biol., 1972, vol. 13, pp. 179−209.

    Article  Google Scholar 

  43. Riisgård, H.U., Kumala, L., and Charitonidou, K., Using the F/R-ratio for an evaluation of the ability of the demosponge Halichondria panicea to nourish solely on phytoplankton versus free-living bacteria in the sea, Mar. Biol. Res., 2016, vol. 12, no. 9, pp. 907−916.

    Article  Google Scholar 

  44. Schneemann, I., Nagel, K., Kajahn, I., et al., Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea, Appl. Environ. Microbiol., 2010, vol. 76, no. 11, pp. 3702−3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sejr, M.K., Petersen, J.K., Jensen, K.T., and Rysgaard, S., Effects of food concentration on clearance rate and energy budget of the Arctic bivalve Hiatella arctica (L) at subzero temperature, J. Exp. Mar. Biol. Ecol., 2004, vol. 311, no. 1, pp. 171−183.

    Article  Google Scholar 

  46. Stuart, V. and Klumpp, D.W., Evidence for food-resource partitioning by kelp-bed filter feeders, Mar. Ecol.: Prog. Ser., 1984, vol. 16, pp. 27−37.

    Article  Google Scholar 

  47. Sukhotin, A.A., Lajus, D.L., and Lesin, P.A., Influence of age and size on pumping activity and stress resistance in the marine bivalve Mytilus edulis L., J. Exp. Mar. Biol. Ecol., 2003, vol. 284, nos. 1–2, pp. 129−144.

    Article  Google Scholar 

  48. Thomassen, S. and Riisgård, H.U., Growth and energetics of the sponge Halichondria panicea, Mar. Ecol.: Prog. Ser., 1995, vol. 128, pp. 239–246.

    Article  Google Scholar 

  49. Troost, K., Stamhuis, E.J., van Duren, L.A., and Wolff, W.J., Feeding current characteristics of three morphologically different bivalve suspension feeders, Crassostrea gigas, Mytilus edulis and Cerastoderma edule, in relation to food competition, Mar. Biol., 2009, vol. 156, no. 3, pp. 355−372.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zajac, R.N., Whitlatch, R.B., and Osman, R.W., Effects of inter-specific density and food supply on survivorship and growth of newly settled benthos, Mar. Ecol.: Prog. Ser., 1989, vol. 56, no. 1, pp. 127−132.

    Article  Google Scholar 

Download references

Funding

The study was supported by a grant no. 20-54-15002 NTsNI_a from the Russian Foundation for Basic Research and by the State Assignment Project no. 1021051402749-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khalaman.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Koznova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaman, V.V., Lezin, P.A. The Pumping Rate of the White Sea Sponge Halichondria panicea (Pallas, 1766) (Porifera: Demospongiae). Russ J Mar Biol 48, 158–165 (2022). https://doi.org/10.1134/S1063074022030051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074022030051

Keywords:

Navigation