Skip to main content
Log in

A Lipidomic Approach to the Study of Biodiversity of Symbiotic Dinoflagellates in Millepora Hydrocorals from Vietnam Coral Reefs

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

To assess the biodiversity of symbiotic dinoflagellates (SD) in hydrocorals, we compared the molecular species compositions of four SD lipid classes such as diacylglyceryl-3-O-carboxyhydroxymethylcholine (DGCC), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG), and sulfoquinovosyldiacylglycerol (SQDG) in Millepora dichotoma and M. platyphylla collected in shallow waters of Vietnam. A statistical analysis showed significant differences in the SD lipid composition between the hydrocoral species. These differences were influenced rather by the lipid molecules of outer membrane (DGCC and DGDG) than by the lipids of chloroplast and thylakoid membranes in SD (MGDG and SQDG). As for the fatty acid (FA) composition of lipid molecules that allow discrimination of hydrocoral SDs, the medium-chain FA 18:4 was characteristic of M. dichotoma, while the long- and very-long-chain FAs (20:5, 22:6, and 28:8) were characteristic of M. platyphylla. Thus, two different Millepora species hosted different SD groups, which had similar thylakoid lipidomes, different lipid profiles of outer membrane, and different activities in biosynthesis of n-3 polyunsaturated FAs. The lipidomic approach has shown that the M. dichotoma population is heterogenic, and about 10% of its colonies can be infected with SDs that are common for M. platyphylla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Lewis, J.B., Biology and ecology of the hydrocoral Millepora on coral reefs, Adv. Mar. Biol., 2006, vol. 50, pp. 1–55.

    Article  Google Scholar 

  2. Rodríguez, L., Lopez, C., Casado-Amezua, P., et al., Genetic relationships of the hydrocoral Millepora alcicornis and its symbionts within and between locations across the Atlantic, Coral Reefs, 2019, vol. 38, pp. 255–268. https://doi.org/10.1007/s00338-019-01772-1

    Article  Google Scholar 

  3. Anthony, K.R.N., Connolly, S.R., and Hoegh-Guldberg, O., Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime, Limnol. Oceanog., 2007, vol. 52, pp. 716–726.

    Article  Google Scholar 

  4. Rosset, S., Koster, G., Brandsma, J., et al., Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts, Coral Reefs, 2019, vol. 38, pp. 1241–1253. https://doi.org/10.1007/s00338-019-01865-x

    Article  Google Scholar 

  5. LaJeunesse, T.C., Parkinson, J.E., Gabrielson, P.W., et al., Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts, Curr. Biol., 2018, vol. 28, pp. 2570–2580. https://doi.org/10.1016/j.cub.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  6. Loh, W., Hidaka, M., Hirose, M., and Titlyanov, E.A., Genotypic diversity of symbiotic dinoflagellates associated with hermatypic coral from a fringing reef at Sesoko Island, Okinawa, Galaxea, 2002, vol. 4, pp. 1–9.

    Google Scholar 

  7. Tchernov, D., Gorbunov, M.Y., de Vargas, C., et al., Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals, Proc. Nat. Acad. Sci. U.S.A., 2004, vol. 101, pp. 13531–13535. https://doi.org/10.1073/pnas.0402907101

    Article  CAS  Google Scholar 

  8. Imbs, A.B., Rybin, V.G., Kharlamenko, V.I., et al., Polyunsaturated molecular species of galactolipids: Markers of zooxanthellae in a symbiotic association of the soft coral Capnella sp. (Anthozoa: Alcyonacea), Russ. J. Mar. Biol., 2015, vol. 41, pp. 461–467. https://doi.org/10.1134/S1063074015060048

    Article  CAS  Google Scholar 

  9. Awai, K., Matsuoka, R., and Shioi, Y., Lipid and fatty acid compositions of Symbiodinium strains, Proc. 12th Inter. Coral Reef Symp., Cairns, 2012.

  10. Sikorskaya, T.V., Ermolenko, E.V., and Imbs, A.B., Effect of experimental thermal stress on lipidomes of the soft coral Sinularia sp. and its symbiotic dinoflagellates, J. Exp. Mar. Biol. Ecol., 2020, vol. 524, artic. 151295, pp. 1–11. https://doi.org/10.1016/j.jembe.2019.151295.

  11. Imbs, A.B., Ermolenko, E.V., Grigorchuk, V.P., and Dang, L.P.T., Seasonal variation in the lipidome of two species of Millepora hydrocorals from Vietnam coastal waters (the South China Sea), Coral Reefs, 2021, vol. 40, pp. 719–734. https://doi.org/10.1007/s00338-021-02073-2

    Article  Google Scholar 

  12. Folch, J.F., Lees, M., and Sloane Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissue, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    Article  CAS  Google Scholar 

  13. Imbs, A.B., Dang, L.P.T., and Nguyen, K.B., Comparative lipidomic analysis of phospholipids of hydrocorals and corals from tropical and cold-water regions, PLOS One, 2019, vol. 14, artic. e0215759, pp. 1–22. https://doi.org/10.1371/journal.pone.0215759.

  14. Sikorskaya, T.V., Efimova, K.V., and Imbs, A.B., Lipidomes of phylogenetically different symbiotic dinoflagellates of corals, Phytochem., 2021, vol. 181, artic. 112579, pp. 1–9. https://doi.org/10.1016/j.phytochem.2020.112579.

  15. Joseph, J.D., Identification of 3,6,9,12,15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates, Lipids, 1975, vol. 10, pp. 395–403.

    Article  CAS  Google Scholar 

  16. Leblond, J.D. and Chapman, P.J., Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates, J. Phycol., 2000, vol. 36, pp. 1103–1108. https://doi.org/10.1046/j.1529-8817.2000.00018.x

    Article  CAS  Google Scholar 

  17. Gray, C.G., Lasiter, A.D., Li, C., and Leblond, J.D., Mono- and digalactosyldiacylglycerol composition of dinoflagellates. I. Peridinin-containing taxa, Eur. J. Phycol., 2009, vol. 44, pp. 191–197. https://doi.org/10.1080/09670260802419481

    Article  CAS  Google Scholar 

  18. Leblond, J.D., McDaniel, S.L., Lowrie, S.D., et al., Mono- and digalactosyldiacylglycerol composition of dinoflagellates. VIII. Temperature effects and a perspective on the curious case of Karenia mikimotoi as a producer of the unusual, ‘green algal’ fatty acid hexadecatetraenoic acid 16:4(n-3), Eur. J. Phycol., 2019, vol. 54, pp. 78–90. https://doi.org/10.1080/09670262.2018.1519602

    Article  CAS  Google Scholar 

  19. Garrett, T.A., Schmeitzel, J.L., Klein, J.A., et al., Comparative lipid profiling of the cnidarian Aiptasia pallida and its dinoflagellate symbiont, PLoS One, 2013, vol. 8, artic. e57975, рр. 1–17. https://doi.org/10.1371/journal.pone.0057975.

  20. Leblond, J.D., Khadka, M., Duong, L., and Dahmen, J.L., Squishy lipids: Temperature effects on the betaine and galactolipid profiles of a C-18/C-18 peridinin-containing dinoflagellate, Symbiodinium microadriaticum (Dinophyceae), isolated from the mangrove jellyfish, Cassiopea xamachana, Phycol. Res., 2015, vol. 63, pp. 219–230. https://doi.org/10.1111/pre.12093

    Article  CAS  Google Scholar 

  21. Rezanka, T., Lukavsky, J., Nedbalova, L., and Sigler, K., Lipidomic profile in three species of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum) containing very long chain polyunsaturated fatty acids, Phytochem., 2017, vol. 139, pp. 88–97. https://doi.org/10.1016/j.phytochem.2017.04.912

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 21-54-54002) and the Vietnam Academy of Science and Technology (grants no. QTRU01.10/21-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Imbs.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbs, A.B., Ermolenko, E.V., Grigorchuk, V.P. et al. A Lipidomic Approach to the Study of Biodiversity of Symbiotic Dinoflagellates in Millepora Hydrocorals from Vietnam Coral Reefs. Russ J Mar Biol 47, 312–317 (2021). https://doi.org/10.1134/S1063074021040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074021040064

Keywords:

Navigation