Symbiotic Relationships between Microalgal Zooxanthellae and Reef-Building Coral Polyps in the Process of Autotrophic and Heterotrophic Nutrition

Abstract

The present review briefly summarizes the results of the studies on coral reefs of the Indo-Pacific conducted by the authors and their colleagues who participated in joint publications and research since the late 1970s until recently. Experimental field and laboratory-based works were carried out during expeditions aboard the R/V Kallisto and R/V Akademik Aleksandr Nesmeyanov, as well as at marine biological stations in Japan, China, Vietnam, and Israel. The main goal of these studies was to obtain data on the variety and mechanisms of symbiotic relationships that are established between a host animal and its intracellular symbionts when the host carries out its most important life functions.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Bil’, K.Ya., Kolmakov, P.V., Pyarnik, T.R., et al., Photosynthetic products of zooxanthellae of the symbiotic corals Stylophora pistillata and Seriatopora coliendrum inhabiting different depths, Fiziol. Rast., 1991, vol. 38, no. 5, pp. 846–854.

    Google Scholar 

  2. 2

    Zvalinsky, V.I., Light dependence of zooxanthellae photosynthesis under continuous and pulsed light, in Biologiya korallovykh rifov. Fotosintez zooksantell i vodoroslei makrofitov (Biology of Coral Reefs: Photosynthesis of Zooxanthellae and Macrophytic Algae), Vladivostok: Dal’nevost. Otd., Akad. Nauk SSSR, 1978, pp. 100–111.

  3. 3

    Zvalinsky, V.I., Titlyanov, E.A., Leletkin, V.A., and Novozhilov, A.V., Light adaptation of corals, in Biologiya korallovykh rifov. Fotosintez zooksantell i vodoroslei makrofitov (Biology of Coral Reefs: Photosynthesis of Zooxanthellae and Macrophytic Algae), Vladivostok: Dal’nevost. Otd., Akad. Nauk SSSR, 1978, pp. 29–52.

  4. 4

    Leletkin, V.A., Zvalinsky, V.I., and Titlyanov, E.A., Photosynthesis of zooxanthellae in corals at different depths, Fiziol. Rast., 1980, vol. 27, no. 6, pp. 1163–1171.

    CAS  Google Scholar 

  5. 5

    Littler, M.M., Littler, D.S., and Titlyanov, E.A., Main autotrophic producers of organic matter on tropical reefs and their relative dominance, Sov. J. Mar. Biol., 1991, vol. 17, no. 6, pp. 315–323.

    Google Scholar 

  6. 6

    Mashanskii, V.F., Li, S.E., Titlyanov, E.A., and Preobrazhenskii, B.V., Morphofunctional correlations of ultrastructure of calciferous cells with respect to illumination, Sov. J. Mar. Biol., 1979, vol. 5, no. 4, pp. 311–314.

    Google Scholar 

  7. 7

    Sorokin, Yu.I., Experimental study of heterotrophic nutrition in common species of reef-building corals, Dokl. Akad. Nauk SSSR, 1979, vol. 249, pp. 509–512.

    Google Scholar 

  8. 8

    Sorokin, Yu.I., Ekosistemy korallovykh rifov (Coral Reef Ecosystems), Moscow: Nauka, 1990.

  9. 9

    Titlyanov, E.A., Morphological differences of colonies of reef-building branching corals living in different light regimes, Sov. J. Mar. Biol., 1987, vol. 13, no. 1, pp. 28–32.

    Google Scholar 

  10. 10

    Titlyanov, E.A., Zooksantelly v germatipnykh korallakh: zhiznennaya strategiya (Zooxanthellae in Hermatypic Corals: A Life Strategy), Vladivostok: Dal’nauka, 1999.

  11. 11

    Titlyanov, E.A., Zvalinsky, V.I., and Leletkin, V.A., Some mechanisms of light adaptation of corals’ zooxanthellae, Dokl. Akad. Nauk SSSR, 1978, vol. 238, no. 5, pp. 1231–1234.

    CAS  Google Scholar 

  12. 12

    Titlyanov, E.A., Zvalinsky, V.I., Leletkin, V.A., and Shaposhnikova, M.G., Photosynthesis of zooxanthellae of reef-building corals under different light conditions, in Biologiya korallovykh rifov. Issledovaniya na banke Fantom (Timorskoye more) (Biology of Coral Reefs: Studies on the Phantom Bank (Timor Sea)), Vladivostok: Dal’nevost. Nauchn. Tsentr, Akad. Nauk SSSR, 1983, pp. 51–74.

  13. 13

    Titlyanov, E.A., Zvalinsky, V.I., Shaposhnikova, M.G., and Leletkin, V.A., Some adaptation mechanisms of coral-reef formations of Australia to light intensity, Sov. J. Mar. Biol., 1981, vol. 7, no. 2, pp. 93–102.

    Google Scholar 

  14. 14

    Titlyanov, E.A., Kolmakov, P.V., and Khieu, L.N., Structure and production function of coral colonies of the genus Pocillopora within the light range of their habitat, in Biologiya korallovykh rifov (Biology of Coral Reefs), Vladivostok: Dal’nevost. Otd., Akad. Nauk SSSR, 1988, pp. 52–71.

  15. 15

    Titlyanov, E.A., Latypov, Yu.Ya., and Ermak, V.D., The effect of light on distribution of scleractinians in the sublittoral zone off the An Thoi, Tho Chu (Gulf of Thailand), and Con Dao islands (South China Sea), in Biologiya korallovykh rifov (Biology of Coral Reefs), Vladivostok: Dal’nevost. Otd., Akad. Nauk SSSR, 1988, pp. 5–18.

  16. 16

    Titlyanov, E.A., Magomedov, I.M., Kolmakov, P.V., and Butorin, P.V., Light adaptation, primary production, and its use in common species of reef-building corals of the Indo-Pacific, in Biologiya korallovykh rifov (Biology of Coral Reefs), Vladivostok: Dal’nevost. Otd., Akad. Nauk SSSR, 1988, pp. 19–45.

  17. 17

    Titlyanov, E.A., Leletkin, V.A., Ermak, V.D., and Voskoboinikov, G.M., Light adaptation of mass species of reef-building corals, Sov. J. Mar. Biol., 1990, vol. 16, no. 1, pp. 25–31.

    Google Scholar 

  18. 18

    Titlyanov, E.A. and Titlyanova, T.V., Reef-building corals—symbiotic autotrophic organisms: 1. General structure, feeding pattern, and light-dependent distribution in the shelf, Russ. J. Mar. Biol., 2002, vol. 28, suppl. 1, pp. S1–S15.

    Article  Google Scholar 

  19. 19

    Titlyanov, E.A. and Titlyanova, T.V., Reef-building corals—symbiotic autotrophic organisms: 2. Pathways and mechanisms of adaptation to light, Russ. J. Mar. Biol., 2002, vol. 28, suppl. 1, pp. S16–S31.

    CAS  Article  Google Scholar 

  20. 20

    Titlyanov, E.A., Titlyanova, T.V., van Woesik, R., and Yamazato, K., Acclimation of the hermatypic coral Stylophora pistillata to bright light, Russ. J. Mar. Biol., 2002, vol. 28, suppl. 1, pp. S41–S46.

    CAS  Article  Google Scholar 

  21. 21

    Titlyanov, E.A., Titlyanova, T.V., Yakovleva, I.M., and Kalita, T.L., Rhythmical changes in the division and degradation of symbiotic algae in hermatypic corals, Russ. J. Mar. Biol., 2006, vol. 32, no. 1, pp. 12–19.

    Article  Google Scholar 

  22. 22

    Barnes, D.J. and Taylor, D.L., In situ studies of calcification and photosynthetic carbon fixation in the coral Montastrea annularis,Helgol. Wiss. Meeresunters., 1973, vol. 24, pp. 284–291.

    CAS  Article  Google Scholar 

  23. 23

    Bil’, K.Y., Kolmakov, P.V., and Muscatine, L., Chapter 13: Photosynthetic products of zooxanthellae of the reef-building corals Stylophora pistillata and Seriatopora caliendrum from different depths of the Seychelles Islands, Atoll Res. Bull., 1992, no. 377, pp. 1–8.

  24. 24

    Blanquet, R.S., Nevenzel, J.C., and Benson, A.A., Acetate incorporation into the lipids of the anemone Anthopleura elegantissima and its associated zooxanthellae, Mar. Biol., 1979, vol. 54, no. 2, pp. 185–194.

    CAS  Article  Google Scholar 

  25. 25

    Colley, N.J. and Trench, R.K., Cellular events in the reestablishment of a symbiosis between a marine dinoflagellate and coelenterate, Cell Tissue Res., 1985, vol. 239, pp. 93–103.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Crossland, C.J., Hatcher, B.G., and Smith, S.V., Role of coral reefs in global ocean production, Coral Reefs, 1991, vol. 10, pp. 55–64.

    Article  Google Scholar 

  27. 27

    Dustan, P., Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solanders in relation to depth on a West Indian coral reef, Bull. Mar. Sci., 1979, vol. 29, no. 1, pp. 79–85.

    Google Scholar 

  28. 28

    Eden, N., Fomina, I., Bil, K., et al., Photosynthetic capacity and composition of 14C fixation products in symbiotic zooxanthellae of Stylophora pistillata in vivo under different light and nutrient conditions, in Proc. VI Int. Conf. “Preservation of Our World in the Wake of Change”, Steinberger, Y., Ed., Jerusalem, Israel: Israeli Society for Ecology and Environmental Quality Sciences, 1996, vol. 6A/B, pp. 462–463.

  29. 29

    Fong, P. and Paul, V.J., Coral reef algae, in Coral Reefs: An Ecosystem in Transition, Dubinsky, Z. and Stambler, N., Eds., Dordrecht, the Netherlands: Springer-Verlag, 2011, pp. 241–272.

    Google Scholar 

  30. 30

    Goreau, T.F., Goreau, N.I., and Yonge, C.M., Reef corals: autotrophs or heterotrophs?, Biol. Bull., 1971, vol. 141, no. 2, pp. 247–260.

    Article  Google Scholar 

  31. 31

    Graus, R.R. and Macintyre, I.G., Light control of growth form in colonial reef corals: computer simulation, Science, 1976, vol. 193, no. 4256, pp. 895–897.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Graus, R.R. and Macintyre, I.G., Variation in growth forms of the reef coral Montastrea annularis (Ellis and Solander): A quantitative evaluation of growth response to light distribution using computer simulation, in The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize. I. Structure and Communities, Rützler, K. and Macintyre, I.G., Eds., Smithsonian Contribution to Marine Sciences, vol. 12, Washington, DC: Smithsonian Inst., 1982, pp. 441–464.

  33. 33

    Harrison, P.L., Sexual reproduction of scleractinian corals: Coral reef algae, in Coral Reefs: An Ecosystem in Transition, Dubinsky, Z. and Stambler, N., Eds., Dordrecht, the Netherlands: Springer-Verlag, 2011, pp. 59–87.

    Google Scholar 

  34. 34

    Leletkin, V.A., Titlyanov, E.A., and Dubinsky, Z., Photosynthesis and respiration of the zooxanthellae in hermatypic corals habitated on different depths of the Gulf of Eilat, Photosynthetica, 1996, vol. 32, no. 4, pp. 481–490.

    Google Scholar 

  35. 35

    Leletkin, V.A., Titlyanov, E.A., Yamazato, Y., and Kamosawa, M., Morpho-functional characteristics of some common branching corals from light and shade habitats on Sesoko Island (Okinawa, Japan), Asian Mar. Biol., 1999, vol. 16, pp. 13–22.

    Google Scholar 

  36. 36

    Loh, W., Hidaka, M., Hirose, M., and Titlyanov, E.A., Genotypic diversity of symbiotic dinoflagellates associated with hermatypic corals from a fringing reef at Sesoko Island, Okinawa, Galaxea, 2002, vol. 2002, no. 4, pp. 1–9.

    Article  Google Scholar 

  37. 37

    Lüning, K., Seaweeds: Their Environment, Biogeography and Ecophysiology, Hoboken, N.J.: Wiley, 1990.

  38. 38

    Malkin, A., Dubinsky, Z., Titlyanov, E., et al., Composition and translocation of symbiotic algae photosynthates at different nutritions in presence of host factor, in Proc. VI Int. Conf. “Preservation of Our World in the Wake of Change”, Steinberger, Y., Ed., Jerusalem, Israel: Israeli Society for Ecology and Environmental Quality Sciences, 1996, vol. 6A/B, pp. 459–461.

  39. 39

    McCloskey, L.R. and Chester, R.H., Effects of man-made pollution on the dynamics of coral reefs, in Tektite 2: Scientists in the Sea, Miller, J.W., van Derwalker, J.G., and Waller, R.A., Eds., Washington, DC: U. S. Dep. of the Interior, 1971, part 4, pp. 229–238.

  40. 40

    Muscatine, L., Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host, Science, 1967, vol. 156, pp. 516–519.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Muscatine, L., The role of symbiotic algae in carbon and energy flux in reef corals, in Ecosystems of the World: Coral Reefs, Dubinsky, Z., Ed., Amsterdam: Elsevier, 1990, pp. 75–87.

    Google Scholar 

  42. 42

    Muscatine, L. and Cernichiari, E., Assimilation of photosynthetic products of zooxanthellae by a reef coral, Biol. Bull., 1969, vol. 137, no. 3, pp. 506–523.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Muscatine, L., Falkowski, P.G., and Dubinsky, Z., Carbon budgets in symbiotic associations, in Endocytobiology II: Intracellular Space as Oligogenetic Ecosystem, Schwemmler, W. and Schenk, H.E.A., Eds., Berlin: Walter de Gruyter, 1983, vol. 2, pp. 649–658.

    Google Scholar 

  44. 44

    Patton, J.S., Abraham, S., and Benson, A.A., Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host, Mar. Biol., 1977, vol. 44, no. 3, pp. 235–247.

    CAS  Article  Google Scholar 

  45. 45

    Stambler, N., Zooxanthellae: The yellow symbionts inside animals, in Coral Reefs: An Ecosystem in Transition, Dubinsky, Z. and Stambler N., Eds., Dordrecht, the Netherlands: Springer-Verlag, 2011, pp. 87–106.

    Google Scholar 

  46. 46

    Titlyanov, E.A., Adaptation of reef-building corals to low light intensity, in Proc. 4th Coral Reef Symp., Manila: Univ. of Philippines, 1981, vol. 2, pp. 39–43.

  47. 47

    Titlyanov, E.A., Light adaptation and production characteristics of branches differing by age and illumination of the hermatypic coral Pocillopora verrucosa,Symbiosis, 1991, vol. 10, pp. 249–260.

    Google Scholar 

  48. 48

    Titlyanov, E.A., The stable level of coral primary production in a wide light range, Hydrobiologia, 1991, vol. 216, pp. 383–387.

    Article  Google Scholar 

  49. 49

    Titlyanov, E.A. and Latypov, Y.Y., Light-dependence in scleractinian distribution in the sublittoral zone of South China Sea Islands, Coral Reefs, 1991, vol. 10, pp. 133–138.

    Article  Google Scholar 

  50. 50

    Titlyanov, E.A., Bil’, K., Fomina, I., et al., Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata,Mar. Biol., 2000, vol. 137, pp. 463–472.

    CAS  Article  Google Scholar 

  51. 51

    Titlyanov, E.A., Leletkin, V.A., and Dubinsky, Z., Autotrophy and predation in the hermatypic coral Stylophora pistillata in different light habitats, Symbiosis, 2000, vol. 29, pp. 263–281.

    Google Scholar 

  52. 52

    Titlyanov, E.A., Shaposhnikova, M.G., and Zvalinsky, V.I., Photosynthesis and adaptation of corals to irradiance. 1. Contents and native state of photosynthetic pigments in symbiotic microalgae, Photosynthetica, 1980, vol. 14, no. 3, pp. 413–421.

    CAS  Google Scholar 

  53. 53

    Titlyanov, E.A., Titlyanova, T.V., and Yamazato, K., Formation, growth and photo-acclimation of colonies of the hermatypic coral Galaxea fascicularis under different light conditions, Symbiosis, 2001, vol. 30, pp. 257–274.

    Google Scholar 

  54. 54

    Titlyanov, E.A., Titlyanova, T.V., and Yamazato, K., Acclimation of symbiotic reef-building corals to extremely low light, Symbiosis, 2002, vol. 33, pp. 125–143.

    Google Scholar 

  55. 55

    Titlyanov, E.A., Titlyanova, T.V., Leletkin, V.A., et al., Degradation of zooxanthellae and regulation of their density in hermatypic corals, Mar. Ecol.: Prog. Ser., 1996, vol. 139, pp. 167–178.

    Article  Google Scholar 

  56. 56

    Titlyanov, E.A., Titlyanova, T.V., Loya, Y., and Yamazato, K., Degradation and proliferation of zooxanthellae in planulae of the hermatypic coral Stylophora pistillata,Mar. Biol., 1998, vol. 130, pp. 471–477.

    Article  Google Scholar 

  57. 57

    Titlyanov, E.A., Titlyanova, T.V., Tsukahara, J., et al., Experimental increases of zooxanthellae density in the coral Stylophora pistillata elucidate adaptive mechanisms for zooxanthellae regulation, Symbiosis, 1999, vol. 26, pp. 347–362.

    Google Scholar 

  58. 58

    Titlyanov, E.A., Titlyanova, T.V., Amat, A., and Yamazato, K., Morphophysiological variations of symbiotic dinoflagellates in hermatypic corals from a fringing reef at Sesoko Island, Galaxea, 2001, vol. 2001, no. 3, pp. 51–63.

    Article  Google Scholar 

  59. 59

    Titlyanov, E.A., Titlyanova, T.V., Yamazato, K., and Van Woesik, R., Photo-acclimation dynamics of the coral Sylophora pistillata to low and extremely low light, J. Exp. Mar. Biol. Ecol., 2001, vol. 263, pp. 211–225.

    Article  Google Scholar 

  60. 60

    Titlyanov, E.A., Titlyanova, T.V., Yamazato, K., and Van Woesik, R., Photo-acclimation of the hermatypic coral Sylophora pistillata while subjected to either starvation or food provisioning, J. Exp. Mar. Biol. Ecol., 2001, vol. 257, pp. 163–181.

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Titlyanov, E.A., Tsukahara, J., Titlyanova, T.V., et al., Zooxanthellae population density and physiological state of the coral Stylophora pistillata during starvation and osmotic shock, Symbiosis, 2000, vol. 28, pp. 303–322.

    Google Scholar 

  62. 62

    Vareschi, E. and Fricke, H., Light responses of scleractinian coral (Plerogyra sinuosa), Mar. Biol., 1986, vol. 90, no. 3, pp. 395–402.

    Article  Google Scholar 

  63. 63

    Veron, J.E.N., Corals of Australia and the Indo-Pacific, North Ryde, NSW, Australia: Angus and Robertson, 1986.

    Google Scholar 

  64. 64

    Yakovleva, I. and Hidaka, M., Diel fluctuations of mycosporine-like amino acids in shallow-water scleractinian corals, Mar. Biol., 2004, vol. 145, no. 5, pp. 863–873.

    CAS  Article  Google Scholar 

  65. 65

    Yakovleva, I.M. and Titlyanov, E.A., Effect of high visible and UV irradiance on subtidal Chondrus crispus: stress, photoinhibition and protective mechanisms, Aquat. Bot., 2001, vol. 71, pp. 47–61.

    CAS  Article  Google Scholar 

  66. 66

    Yakovleva, I., Bhagooli, R., Takemura, A., and Hidaka, M., Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2004, vol. 139, pp. 721–730.

    CAS  Article  Google Scholar 

  67. 67

    akovleva, I.M., Baird, A.H., Yamamoto, H.H., et al., Algal symbionts increase oxidative damage and death in coral larvae at high temperatures, Mar. Ecol.: Prog. Ser., 2009, vol. 378, pp. 105–112

    CAS  Article  Google Scholar 

  68. 68

    Yonge, C.M., Studies on the physiology of corals. I. Feeding mechanisms and food, in Great Barrier Reef Expeditions 1928–29: Scientific Reports, London: British Museum (Natural History), 1930, vol. 1, no. 2, pp. 13–37.

    Google Scholar 

  69. 69

    Yonge, C.M., Food assimilation and excretion in corals, in Great Barrier Reef Expeditions 1928–29: Scientific Reports, London: British Museum (Natural History), 1930, vol. 1, pp. 14–57.

    Google Scholar 

  70. 70

    Yonge, C.M., The nature of hermatypic reef-building corals, Bull. Mar. Sci., 1973, vol. 23, pp. 1–15.

    Google Scholar 

  71. 71

    Zhukova, N.V. and Titlyanov, E.A., Fatty acid variations in symbiotic dinoflagellates from Okinawan corals, Phytochemistry, 2003, vol. 62, pp. 191–195.

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Zhukova, N.V. and Titlyanov, E.A., Effect of light intensity on the fatty acid composition of dinoflagellates symbiotic with hermatypic corals, Bot. Mar., 2006, vol. 49, pp. 339–346.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. A. Titlyanov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Shvetsov

Invited paper published in connection with the 50th anniversary of the foundation of Zhirmunsky Institute of Marine Biology (now Zhirmunsky NSCMB).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Titlyanov, E.A., Titlyanova, T.V. Symbiotic Relationships between Microalgal Zooxanthellae and Reef-Building Coral Polyps in the Process of Autotrophic and Heterotrophic Nutrition. Russ J Mar Biol 46, 307–318 (2020). https://doi.org/10.1134/S1063074020050107

Download citation

Keywords:

  • reef-building corals
  • zooxanthellae
  • symbiotic relationships