Skip to main content
Log in

Hydrolytic Enzymes from Marine Organisms as Inhibitors of Biofilm Formation

  • BRIEF NOTES
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The effects of some hydrolytic enzymes from marine organisms on the formation and destruction of bacterial biofilms have been studied. As the results show, the presence of α-D-galactosidase from the marine bacterium Pseudoalteromonas sp. KMM 701 stimulates the growth of biofilms formed by various species of marine bacteria, whereas the formation of biofilms by Bacillus subtilis and Yersinia pseudotuberculosis is inhibited by this enzyme. Treatment with α-galactosidase causes destruction of 5 to 35% of a mature biofilm of various bacterial species. Phosphodiesterase and alkaline phosphatase from the marine bacterium Cobetia amphilecti KMM 296 have an inhibitory effect on the biofilm formation by marine strains of Bacillus licheniformis, B. aegricola, and B. berkelogi, and also degrade already formed biofilms of these bacilli and Yersinia. The crab hepatopancreas DNase inhibits the biofilm formation by Y. pseudotuberculosis and B. subtilis by partially degrading a mature biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Golotin, V.A., Balabanova, L.A., Buinovskaya, N.S., et al., Alkaline phosphatase from the marine bacteria Cobetia marina as a tool to study the properties of recombinant proteins, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2015, no. 6 (184), pp. 125–131.

  2. Kuznetsov, V.G., Lazhentseva, L.Yu., Eliseikina, M.G., et al., Spreading of bacteria Yersinia genus in sea water and hydrobionts, Zh. Microbiol., Epidemiol., Immunobiol., 2006, no. 53, pp. 117–120.

  3. Menzorova, N.I., Markova, A.V., and Rasskazov, V.A., Highly stable Ca, Mg-dependent DNase from red king crab hepatopancreas, Biokhimiya, 1994, vol. 59, pp. 449–456.

    CAS  Google Scholar 

  4. Romanova, Yu.M. and Gintsburg, A.L., Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism, Zh. Microbiol., Epidemiol., Immunobiol., 2011, no. 33, pp. 99–109.

  5. Slepchenko, L.V., Balabanova, L.A., Bakunina, I.Yu., et al., Properties and possible biological role of alpha-galactosidase from marine bacterium Pseudoalteromonas spp. KMM 701, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2017, no. 2 (192), pp. 51–58.

  6. Somov, G.P., Modern views on sapronoses and saprozoonoses, Vet. Patol., 2004, no. 3, pp. 31–35.

  7. Terentieva, N.A., Timchenko, N.F., Balabanova, L.A., and Rasskazov, V.A., Characteristics of formation, inhibition and destruction of Yersinia pseudotuberculosis biofilms forming on abiotic surfaces, Zh. Microbiol., Epidemiol., Immunobiol., 2015, no. 3, pp. 72–78.

  8. Bakunina, I., Slepchenko, L., Anastyuk, S., et al., Characterization of properties and transglycosylation abilities of recombinant α-galactosidase from cold-adapted marine bacterium Pseudoalteromonas KMM 701 and its C494N and D451A mutants, Mar. Drugs, 2018, vol. 16, no. 10, art. ID 349. https://doi.org/10.3390/md16100349

    Article  CAS  PubMed Central  Google Scholar 

  9. Balabanova, L.A., Bakunina, I.Yu., Nedashkovskaya, O.I., et al., Molecular characterization and therapeutic potential of a marine bacterium Pseudoalteromonas sp. KMM 701 α-galactosidase, Mar. Biotechnol., 2010, vol. 12, pp. 111–120.

    Article  CAS  Google Scholar 

  10. Balabanova, L.A., Golotin, V.A., Bakunina, I.J., and Rasskazov, V.A., Patent RU 2504583 C1, Izobret., Polezn. Modeli, 2014, no. 2.

  11. Balabanova, L., Podvolotskaya, A., Slepchenko, L., et al., Nucleolytic enzymes from the marine bacterium Cobetia amphilecti KMM 296 with antibiofilm activity and biopreservative effect on meat products, Food Control, 2017, vol. 78, pp. 270–278. https://doi.org/10.1016/j.foodcont.2017.02.029

    Article  CAS  Google Scholar 

  12. Costerton, J.W., Stewart, P.S., and Greenberg, E.P., Bacterial biofilms: a common cause of persistent infections, Science, 1999, vol. 284, pp. 1318–1322.

    Article  CAS  Google Scholar 

  13. Fleming, D. and Rumbaugh, K.P., Approaches to dispersing medical biofilms, Microorganisms, 2017, vol. 5, art. ID 15. https://doi.org/10.3390/microorganisms5020015

    Article  CAS  PubMed Central  Google Scholar 

  14. Flemming, H.-C. and Wingender, J., The biofilm matrix, Nat. Rev. Microbiol., 2010, vol. 8, pp. 623–633.

    Article  CAS  Google Scholar 

  15. Gilan, I. and Sivan, A., Extracellular DNA plays an important structural role in the biofilm of the plastic degrading actinomycete Rhodococcus rubber,Adv. Microbiol., 2013, vol. 3, pp. 543–551.

    Article  Google Scholar 

  16. Lazar, V., Quorum sensing in biofilms – How to destroy the bacterial citadels or their cohesion/power?, Anaerobe, 2011, vol. 17, no. 6, pp. 280–285.

    Article  Google Scholar 

  17. Nijland, R., Hall, M.J., and Burgess, J.G., Dispersal of biofilms by secreted, matrix degrading, bacterial DNAse, PLoS One, 2010, vol. 5, no. 12, art. ID e15668. https://doi.org/10.1371/journal.pone.0015668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noskova, Y.A., Balabanova, L.A., and Terentieva, N.A., Alkaline phosphatase/phosphodiesterase from marine bacterium Cobetia amphilecti KMM 296, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2018, no. 6, suppl. 1, pp. 94–95.

  19. O’Toole, G.A., Microtiter dish biofilm formation assay, J. Visualized Exp., 2011, vol. 47, art. ID e2437. https://doi.org/10.3791/2437

    Article  Google Scholar 

  20. Römling, U. and Balsalobre, C., Biofilm infections, their resilience to therapy and innovative treatment strategies, J. Intern. Med., 2012, vol. 272, pp. 541–561.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Terenteva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terenteva, N.A., Buinovskaya, N.S., Noskova, Y.A. et al. Hydrolytic Enzymes from Marine Organisms as Inhibitors of Biofilm Formation. Russ J Mar Biol 46, 302–305 (2020). https://doi.org/10.1134/S1063074020040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074020040094

Keywords:

Navigation