Abstract
For more than the past three decades, flow cytometry has been successfully applied in various, including phytoplankton, studies that require rapid qualitative assessment of the physiological condition, chemical composition, and number of microalgal cells. The potential of this method for solving applied and fundamental problems in microalgae research, the parameters of main fluorescent dyes used for this method, the features of microalgae as study objects, as well as the challenges associated with the use of the method, are discussed in the present review.
Similar content being viewed by others
REFERENCES
Zueva, E.E., Kurtova, A.V., Rusanova, E.B., et al., Diagnostika onkogematologicheskikh zabolevanii s pomoshch’yu protochnoi tsitometrii (Diagnostics of Oncological and Hematological Disorders Using Flow Cytometry), Emmanuel’, V.L., Ed., St. Petersburg: SpetsLit, 2017.
Zurochka, A.V., Khaidukov, S.V., Kudryavtsev, I.V., and Chereshnev, V.A., Protochnaya tsitometriya v meditsine i biologii (Flow Cytometry in Medicine and Biology), 2nd ed., Yekaterinburg: Redaktsionno-Izdatel’sky Otdel, Ural. Otd., Ross. Akad. Nauk, 2014.
Knyazev, N.A., Pechkovskaya, S.A., Skarlato, S.O., et al., The impact of temperature stress on DNA and RNA synthesis in potentially toxic dinoflagellates Prorocentrum minimum, J. Evol. Biochem. Physiol., 2018, vol. 54, no. 5, pp. 383–389.
Markina, Zh.V. and Aizdaicher, N.A., Copper influence on different taxonomic groups marine microalgae cultures estimation with flow cytometry, Voda: Khim. Ekol., 2018, nos. 10–12, pp. 43–50.
Solomonova, E.S., Dynamics of physiologically active cells of pico- and nanophytoplankton in the coastal waters of Black Sea, Vestn. S.-Peterb. Univ., Ser. 3: Biol., 2016, no. 1, pp. 62–72.
Solomonova, E.S. and Akimov, A.I., The assessment of functional status of Chlorella vulgaris suboblonga by flow cytometry and variable fluorescence, Morsk. Ekol. Zh., 2012, vol. 11, no. 4, pp. 78–84.
Solomonova, E.S. and Akimov, A.I., Relation of live and dead components of suspension in some microalgae’ cultures in dependence on growth stage and different illumination, Morsk. Ekol. Zh., 2014, vol. 13, no. 1, pp. 73–81.
Alemán-Nava, G.S., Cuellar-Bermudez, S.P., Cuaresma, M., et al., How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids, J. Microbiol. Methods, 2016, pp. 128, pp. 74–79.
Balduyck, L., Veryser, C., Goiris, K., et al., Optimization of a Nile Red method for rapid lipid determination in autotrophic, marine microalgae is species dependent, J. Microbiol. Methods, 2015, vol. 128, pp. 152–158.
Børsheim, K.Y., Harboe, T., Jonsen, T., et al., Flow cytometric characterization and enumeration of Chrysochromulina polylepis during a bloom along the Norwegian coast, Mar. Ecol.: Prog. Ser., 1989, vol. 54, pp. 307–309.
Carrier, G., Baroukh, C., Rouxel, C., et al., Draft genomes and phenotypic characterization of Tisochrysis lutea strains. Toward the production of domesticated strains with high added value, Algal Res., 2018, vol. 29, pp. 1–11.
Chew, K.W., Yap, J.Y., Show, P.L., et al., Microalgae biorefinery: High value products perspectives, Bioresour. Technol., 2017, vol. 229, pp. 53–62.
Chioccioli, M., Hankamer, B., and Ross, I.L., Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris, PLoS One, 2014, vol. 9, art. ID e97269. https://doi.org/10.1371/journal.pone.0097269
Cid, A., Fidalago, P., Herrero, C., and Abalde, J., Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry, Cytometry, Part A, 1996, vol. 25, pp. 32–36.
Cid, A., Torres, E., Herrero, C., and Abalde, J., Disorders provoked by copper in the marine diatom Phaeodactylum tricornutum in short-time exposure assays, Cah. Biol. Mar., 1997, vol. 38, pp. 201–206.
Cooksey, K.E., Guckert, G.B., Williams, S.A., and Callis, P.R., Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red, J. Microbiol. Methods, 1987, vol. 6, pp. 333–345.
Cunningham, A. and Buonnacorsi, G.A., Narrow-angle forward light scattering from individual algal cells: implications for size and shape discrimination in flow cytometry, J. Plankton. Res., 1992, vol. 14, pp. 223–234.
Cunningham, A. and Leftley, J.W., Application of flow cytometry to algal physiology and phytoplankton ecology, FEMS Microbiol. Rev., 1986, vol. 1, pp. 159–164.
Dashkova, V., Malashenkov, D., Poulton, N., et al., Imaging flow cytometry for phytoplankton analysis, Methods, 2017, vol. 112, pp. 188–200.
Debelius, B., Forja, J.M., DelValls, T.A., and Lubián, L.M., Toxicity of copper in natural marine picoplankton populations, Ecotoxicology, 2009, vol. 18, pp. 1095–1103.
Doan, T.-T.Y. and Obbard, J.P., Improved Nile Red staining of Nannochloropsis sp., J. Appl. Phycol., 2011, vol. 23, pp. 895–901.
Dorsey, J., Yentsch, C.M., Mayo, S., and McKenna, C., Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae, Cytometry, Part A, 1989, vol. 10, pp. 622–628.
Eleršek, T., The advantages of flow cytometry in comparison to fluorometric measurement in algal toxicity test, Acta Biol. Slov., 2012, vol. 55, no. 2, pp. 3–11.
Esperanza, M., Houde, M., Seoane, M., et al., Does a short-term exposure to atrazine provoke cellular senescence in Chlamydomonas reinhardtii?, Aquat. Toxicol., 2017, vol. 189, pp. 184–193.
Figueroa, R.I., Garces, E., and Bravo, I., The use of flow cytometry for species identification and life-cycle studies in dinoflagellates, Deep Sea Res., Part II, 2010, vol. 57, pp. 301–307.
Forget, N., Belzile, C., Rioux, P., and Nozais, C., Teaching the microbial growth curve concept using microalgal cultures and flow cytometry, J. Biol. Educ., 2010, vol. 44, pp. 185–189.
Franklin, N.M., Stauber, J.L., and Lim, R.P., Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters, Environ. Toxicol. Chem., 2001, vol. 20, pp. 160–170.
Franqueira, D., Orosa, M., Torres, E., et al., Potential use of flow cytometry in toxicity studies with microalgae, Sci. Total Environ., 2000, vol. 247, pp. 119–126.
Gomes, A., Ferdandes, E., and Lima, J.L.F.C., Fluorescence probes used for detection of reactive oxygen species, J. Biochem. Biophys. Methods, 2005, vol. 65, pp. 45–80.
Govender, T., Ramanna, L., Rawat, I., and Bux, F., BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae, Bioresour. Technol., 2012, vol. 114, pp. 507–511.
Grégori, G., Denis, M., Lefèvre, D., and Beker, B., A flow cytometric approach to assess phytoplankton respiration, Methods Cell Sci., 2002, vol. 24, pp. 99–106.
Günerken, E., D’Hondt, E., Eppink, M., et al., Flow cytometry to estimate the cell disruption yield and biomass release of Chlorella sp. during bead milling, Algal Res., 2017, vol. 25, pp. 25–31.
Guzmán, H.M., de la Jara Valido, A., Duarte, L.C., and Presmanes, K.F., Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions, Aquacult. Int., 2010, vol. 18, pp. 189–199.
Hallenbeck, P.C., Grogger, M., Mraz, M., and Veverka, D., The use of Design of Experiments and Response Surface Methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculums size and CO2, Bioresour. Technol., 2015, vol. 184, pp. 161–168.
Hamed, I., The evolution and versatility of microalgal biotechnology: a review, Compr. Rev. Food Sci. Food Saf., 2016, vol. 15, pp. 1104–1123.
Hejazi, M.A., Kleinegris, D., and Wijffels, R.H., Mechanism of extraction of β-carotene from microalga Dunaliella salina in two-phase bioreactors, Biotechnol. Bioeng., 2004, vol. 88, pp. 593–600.
Hong, H.-H., Lee, H.-G., Jo, J., et al., The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry, Algae, 2016, vol. 31, pp. 373–378.
Hyka, P., Lickova, S., Přibyl, P., et al., Flow cytometry for development of biotechnological processes with microalgae, Biotechnol. Adv., 2013, vol. 31, pp. 2–16.
Jamers, A.N., Lenjou, M., Deraedt, P., et al., Flow cytometric analysis of the cadmium-exposed green alga Chlamydomonas reinhardtii (Chlorophyceae), Eur. J. Phycol., 2009, vol. 44, pp. 541–550.
de la Jara, A., Mendoza, H., Martel, A., et al., Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii, J. Appl. Phycol., 2003, vol. 15, pp. 433–438.
Jochem, F.J., Probing the physiological state of phytoplankton at the single-cell level, Sci. Mar., 2000, vol. 64, pp. 183–195.
Kapuscinski, J., DAPI: a DNA-specific fluorescent probe, Biotech. Histochem., 1995, vol. 70, pp. 220–233.
Kleinegris, D.M., van Es, M.A., Janssen, M., et al., Carotenoid fluorescence in Dunaliella salina, J. Appl. Phycol., 2010, vol. 22, pp. 645–649.
Koch, F., Kang, Y., Villareal, T.A., et al., A novel immunofluorescence flow cytometry technique detects the expansion of brown tides caused by Aureoumbra lagunensis to the Caribbean Sea, Appl. Environ. Microbiol., 2014, vol. 80, pp. 4947–4957.
Levy, J.L., Stauber, J.L., and Jolley, D.F., Sensitivity of marine microalgae to copper: The effect of biotic factors on copper adsorption and toxicity, Sci. Total Environ., 2007, vol. 387, pp. 141–154.
Long, M., Paul-Pont, I., Hégaret, H., et al., Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation, Environ. Pollut., 2017, vol. 228, pp. 454–463.
MacIntyre, H.L. and Cullen, J.J., Classification of phytoplankton cells as live or dead using the vital stains fluorescein diacetate and 5-chloromethylfluorescein diacetate, J. Phycol., 2016, vol. 52, pp. 572–589.
Marie, D., Rigaut-Jalabert, F., and Vaulot, D., An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples, Cytometry, Part A, 2014, vol. 85, pp. 962–968.
Marie, D., Simon, N., Guillou, L., et al., DNA/RNA analysis of phytoplankton by flow cytometry, Curr. Protoc. Cytom., 2000, vol. 11, pp. 11.12.1–11.12.14. https://doi.org/10.1002/0471142956.cy1112s11
Mazálova, P., Šarhanova, P., Ondřej, V., and Poulíčková, A., Quantification of DNA content in freshwater microalgae using flow cytometry: a modified protocol for selected green microalgae, Fottea, 2011, vol. 11, pp. 317–328.
Mendoza, H., de la Jara, A., Freijanes, K., et al., Characterization of Dunaliella salina strains by flow cytometry: a new approach to select carotenoid hyperproducing strains, Electron. J. Biotechnol., 2008, vol. 11, pp. 2–13.
Oda, T., Nakamura, A., Shikayama, M., et al., Generation of reactive oxygen species by raphidophycean phytoplankton, Biosci., Biotechnol., Biochem., 1997, vol. 61, pp. 1658–1662.
Peperzak, L. and Brussaard, C.P.D., Flow cytometric applicability of fluorescent vitality probes on phytoplankton, J. Phycol., 2011, vol. 47, pp. 692–702.
Pereira, H., Schulze, P.S.C., Schüler, L.M., et al., Fluorescence activated cell-sorting principles and applications in microalgal biotechnology, Algal Res., 2018, vol. 30, pp. 113–120.
Pérez-Pérez, M.E., Lemaire, S.D., and Crespo, J.L., Reactive oxygen species and autophagy in plants and algae, Plant Physiol., 2012, vol. 160, pp. 156–164.
Picot, J., Guerin, C.L., Kim, C.L.V., and Boulanger, C.M., Flow cytometry: retrospective, fundamentals and recent instrumentation, Cytotechnology, 2012, vol. 64, pp. 109–130.
Satpati, G.G. and Pal, R., Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique, Ann. Microbiol., 2015, vol. 65, pp. 937–949.
Segovia, M. and Berges, J.A., Inhibition of caspase-like activities prevents the appearance of reactive oxygen species and dark-induced apoptosis in the unicellular chlorophyte Dunaliella tertiolecta, J. Phycol., 2009, vol. 45, pp. 1116–1126.
Seoane, M., Esperanza, M., Rioboo, C., et al., Flow cytometric assay to assess short-term effects of personal care products on marine microalga Tetraselmis suecica, Chemosphere, 2017, vol. 171, pp. 339–347.
Shapiro, H.M., Practical Flow Cytometry, 4th ed., Hoboken, N.J.: Willey, 2003.
Skarlato, S., Filatova, N., Knyazev, N., et al., Salinity stress response of the invasive dinoflagellate Prorocentrum minimum, Estuarine, Coastal Shelf Sci., 2018, vol. 211, pp. 199–207.
Stauber, J., Franklin, N., and Adams, M., Microalgal toxicity tests using flow cytometry, in Small-Scale Freshwater Toxicity Investigations, vol. 1: Toxicity Test Methods, Blaise, C. and Ferard, J.-F., Eds., Netherlands: Springer-Verlag, 2005, pp. 203–241.
Stauffer, B.A., Schaffner, R.A., Wazniak, C., and Caron, D.A., Immunofluorescence flow cytometry technique for enumeration of the brown-tide alga, Aureococcus anophagefferens, Appl. Environ. Microbiol., 2008, vol. 74, pp. 6931–6940.
Tobin, E.D., Grünbaum, D., Patterson, J., and Cattolico, R.A., Behavior and physiological changes during benthic-pelagic transition in the harmful alga, Heterosigma akashiwo: Potential for rapid bloom formation, PLoS One, 2013, vol. 8, art. ID e76663. https://doi.org/10.1371/journal.pone.0076663
Trask, B.J., van den Engh, G.J., and Elgershuizen, J.H.B.W., Analysis of phytoplankton by flow cytometry, Cytometry, Part A, 1982, vol. 2, pp. 258–264.
van den Engh, G.J., Doggett, J.K., Thompson, A.W., et al., Dynamics of Prochlorococcus and Synechococcus at station ALOHA revealed through flow cytometry and high-resolution vertical sampling, Front. Mar. Sci., 2017, vol. 4, no. 359. https://doi.org/10.3389/fmars.2017.00359
Vaulot, D., Olson, R.J., and Chrisholm, S.W., Light and dark control of the cell cycle in two marine phytoplankton species, Exp. Cell Res., 1986, vol. 167, pp. 38–52.
Veldhuis, M.J.W. and Kraay, G.W., Application of flow cytometry in marine phytoplankton research: current applications and future perspectives, Sci. Mar., 2000, vol. 64, pp. 121–134.
Veldhuis, M., Kraay, G., and Timmermans, K., Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth, Eur. J. Phycol., 2001, vol. 36, pp. 167–177.
Vigani, M., Parisi, C., Rodríguez-Cerezo, E., et al., Food and feed products from micro-algae: Market opportunities and challenges for the EU, Trends Food Sci. Technol., 2015, vol. 42, pp. 81–92.
Yentsch, C.M., Mague, F.C., Horan, P.K., and Muirhead, K., Flow cytometric DNA determinations on individual cells of the dinoflagellate Gonyaulax tamarensis var. excavata, J. Exp. Mar. Biol. Ecol., 1983, vol. 67, pp. 175–183.
Zetsche, E.-M. and Meysman, F.J.R., Dead or alive? Viability assessment of micro- and mesoplankton, J. Plankton Res., 2012, vol. 34, pp. 493–509.
ACKNOWLEDGMENTS
The author is grateful to A.V. Boroda, a senior researcher of the Cell Technology Laboratory, Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, for his assistance in the preparation of this article.
Funding
The work was supported with grant no. 18-4-050 in the framework of the program Priority research in the interest of integrated development of the Far Eastern Branch of RAS.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The author declares that she has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.
Additional information
Translated by E. Shvetsov
Rights and permissions
About this article
Cite this article
Markina, Z.V. Flow Cytometry as a Method to Study Marine Unicellular Algae: Development, Problems, and Prospects. Russ J Mar Biol 45, 333–340 (2019). https://doi.org/10.1134/S1063074019050079
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063074019050079