Abstract—
The biological activity of extracts from nine species of marine invertebrates (the phyla Cnidaria, Annelida, Sipunculida, and Nemertea) that inhabit Troitsa Bay (Peter the Great Bay, Sea of Japan) was determined using in vitro and in vivo models. It was found that extracts of marine worms, that is, the polychaete Eularia viridis and sipunculida Phascolostoma agassizii, have an antibacterial effect and reduce the adhesion of macrophages, whereas extracts of the jellyfish Gonionemus vertens exhibit neurotoxic effects and are also able to increase or decrease the adhesion of macrophages, depending on the method of extraction. These marine animals can be a source of antimicrobial, antioxidant, antitumor, and immunostimulating compounds.
This is a preview of subscription content, access via your institution.
REFERENCES
- 1
Alonso-del-Rivero, M., Trejo, S., Rodríguez de la Vega, M., et al., A novel metallocarboxypeptidase-like enzyme from the marine annelid Sabellastarte magnifica—a step into the invertebrate world of proteases, FEBS J., 2009, vol. 276, pp. 4875−4890.
- 2
Alonso-del-Rivero, M., Trejo, S., and Reytor, M.L., Tri-domain bifunctional inhibitor of metallocarboxypeptidases A and serine proteinases isolated from marine annelid Sabellastarte magnifica, J. Biol. Chem., 2012, vol. 287, no. 19, pp. 15427−15438.
- 3
Andersson, H., Jacobsson, E., Strand, M., et al., α‑Nemertides, a novel family of marine peptide neurotoxins from ribbon worms, 19th World Congress of the IST, Haikou, People’s Republic of China, Oct. 24−31, 2017, p. 138.
- 4
Bacq, Z., Poisons of nemerteans, Bull. Acad. R. Belg. Cl. Sci., 1936, vol. 22, pp. 1072−1079.
- 5
Badré, S., Bioactive toxins from stinging jellyfish, Toxicon, 2014, vol. 1, pp. 11−12.
- 6
Baurain, D., Brinkmann, H., and Philippe, H., Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors?, Mol. Biol. Evol., 2007, vol. 24, no. 1, pp. 6−9.
- 7
Boore, J., Lavrov, D., and Brown, W., Gene translocation links insects and crustaceans, Nature, 1998, vol. 392, pp. 667−668.
- 8
Carmichael, J., Degraff, W.G., Gazdar, A.F., et al., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 1987, vol. 47, pp. 936−942.
- 9
Carroll, S., McEvoy, E., Gibson, R., et al., The production of tetrodotoxin-like substances by nemertean worms in conjunction with bacteria, J. Exp. Mar. Biol. Ecol., 2002, vol. 288, pp. 51−63.
- 10
Cooper, E., Comparative Immunology, Englewood Cliffs, N.J.: Prentice Hall, 1976, pp. 88, 103, 202, and 274.
- 11
Florkin, M., Chemical Zoology, vol. 4: Annelida, Echiuria, and Sipuncula, New York: Academic, 1969, pp. 420−437.
- 12
Glinsky, G., Anti-adhesion cancer therapy, Cancer Metastasis Rev., 1998, vol. 17, pp. 177−185.
- 13
Honma, T., Kawahata, S., Ishida, M., et al., Novel peptide toxins from the sea anemone Stichodactyla haddoni, Peptides, 2008, vol. 29, pp. 536−544.
- 14
Hrzenjak, T., Hrzenjak, M., Kasuba, V., et al., A new source of biologically active compounds—earthworm tissue (Eisenia foetida, Lumbruicus rubelus), Comp. Biochem. Physiol., 1992, vol. 102, pp. 441−447.
- 15
Jouiaei, M., Yanagihara, A., and Madio, B., Ancient venom systems: a review on Cnidaria toxins, Toxins, 2015, vol. 7, pp. 2251−2271.
- 16
Kauschke, E. and Mohrig, W., Cytotoxic activity in the coelomic fluid of the annelid Eisenia foetida, J. Comp. Physiol. B, 1987, vol. 157, pp. 77−83.
- 17
Kem, W., Anabaseine as a molecular model for design of Alpha7 nicotinic receptor agonist drugs, Perspectives in Molecular Toxinology, Ménez, A., Ed., Chichester, England: Wiley, 2002, pp. 297−314.
- 18
Kuzmenkov, A., Fedorova, I., Vassilevski, A., and Grishin, E., Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments, Biochim. Biophys. Acta, 2013, vol. 1828, no. 2, pp. 724−731.
- 19
Leary, S., Underwood, W., and Anthony, R., AVMA Guidelines for the Euthanasia of Animals: 2013 edition, Shaumburg, Ill.: Am. Vet. Med. Assoc., 2013, p. 67.
- 20
Lowry, O., Rosebrough, N., Farr, A., et al., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265−275.
- 21
Mariottini, G.L. and Pane, L., Mediterranean jellyfish venoms: a review on Scyphomedusae, Mar. Drugs, 2010, vol. 8, pp. 1122−1152.
- 22
Masuda, A., Baba, T., Dohmae, N., et al., Mucin (qniumucin), a glycoprotein from jellyfish, and determination of its main chain structure, J. Nat. Prod., 2007, vol. 70, pp. 1089−1092.
- 23
Miyazawa, K., Higashiyama, M., Ito, K., et al., Tetrodotoxin in two species of ribbon worm (Nemertini), Lineus fuscoviridis and Tubulanus punctatus, Toxicon, 1988, vol. 26, pp. 867−874.
- 24
Morishige, H., Sugahara, T., Nishimoto, S., et al. Immunostimulatory effects of collagen from jellyfish in vivo, Cytotechnology, 2011, vol. 63, pp. 481−492.
- 25
Ohta, N., Sato, M., Ushida, K., et al., Jellyfish mucin may have potential disease-modifying effects on osteoarthritis, BMC Biotechnol., 2009, vol. 9, pp. 98.
- 26
Popović, M., Grdiša, M., and Hrženjak, T., Glycolipoprotein G-90 obtained from the earthworm Eisenia foetida exerts antibacterial activity, Vet. Arh., 2005, vol. 75, no. 2, pp. 119−128.
- 27
Regier, J., Shultz, J., Ganley, A., et al., Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence, Syst. Biol., 2008, vol. 57, pp. 920−938.
- 28
Romanenko, L., Uchino, M., Kalinovskaya, N., and Mikhailov, V., Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities, Microbiol. Res., 2008, vol. 163, pp. 633−644.
- 29
Shiomi, K., Honma, T., Idev M., et al., An epidermal growth factor-like toxin and two sodium channel toxins from the sea anemone Stichodactyla gigantean, Toxicon, 2003, vol. 41, pp. 229−236.
- 30
Silchenko, A.S., Kalinovsky, A.I., Avilov, S.A., et al., Triterpene glycosides from the sea cucumber Eupentacta fraudatrix. Structure and biological action of cucumariosides A1, A3, A4, A5, A6, A12 and A15, seven new minor non-sulfated tetraosides and unprecedented 25-keto,25-norholostane aglycone, Nat. Prod. Commun., 2012, vol. 7, no. 4, pp. 517−525.
- 31
Sintsova, O., Gladkikh, I., Chausova, V., et al., Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor, J. Proteomics, 2018, vol. 173, pp. 12−21.
- 32
Stein, E. and Cooper, E., Carbohydrate and glycoprotein inhibitors of naturally occurring and induced agglutinins in the earthworm Lumbricus terrestris, Comp. Biochem. Physiol., 1983, vol. 76, pp. 197−206.
- 33
Uliasz, T.F. and Hewett, S.J., A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture, J. Neurosci. Methods, 2000, vol. 100, pp. 157−163.
- 34
Wojdani, A., Stein, E., Alfred, L., and Cooper, E.L., Mitogenic effect of earthworm (Lumbricus terrestris) coelomic fluid on mouse and human lymphocytes, Immunobiology, 1984, vol. 166, pp. 157−167.
- 35
Zhuang, Y., Sun, L., and Li, B., Production of the angiotensin-I-converting enzyme (ACE)-inhibitory peptide from hydrolysates of jellyfish (Rhopilema esculentum) collagen, Food Bioproc. Technol., 2010, vol. 5, pp. 1622−1629.
- 36
Zhuang, Y., Sun, L., Zhang Y., and Liu G., Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension, Mar. Drugs, 2012, vol. 10, pp. 417−426.
Author information
Affiliations
Corresponding author
Additional information
Translated by I. Barsegova
Rights and permissions
About this article
Cite this article
Kozlovskii, S.A., Sintsova, O.V., Pislyagin, E.A. et al. The Biological Activity of Extracts of Marine Invertebrates from Troitsa Bay (Sea of Japan). Russ J Mar Biol 44, 465–470 (2018). https://doi.org/10.1134/S106307401806007X
Received:
Published:
Issue Date:
Keywords:
- invertebrates
- Cnidaria
- Annelida
- Nemertea
- Sipuncula
- insectotoxins
- biologically active compounds