Russian Journal of Marine Biology

, Volume 44, Issue 2, pp 122–126 | Cite as

The High Divergence of Two Morphologically Similar Trematode Species of the Genus Nanophyetus of Salmonids from the Data of mtDNA nad1 Gene Sequences

  • A. N. Voronova
  • G. N. Chelomina
Original Papers


Intestinal flukes of fish (mainly salmonids) belonging to the genus Nanophyetus (Trematoda: Troglotrematidae) are the causative agents of nanophyetiasis, a zoonotic disease of animals and humans, which is widespread in countries in the northern Pacific. Two geographical forms, one from North America and the other from the eastern Eurasia were described within this genus; however, their taxonomic status was debatable. A multilocus analysis of nuclear rDNA sequences applied in this study has shown that these forms are independent nominal species: Nanophyetus salmincola and Nanophyetus schikhobalowi. This study, based on sequencing the mtDNA nad1 gene, has evaluated the genetic variability of N. schikhobalowi from eastern Eurasia (Russia) and compared our data with the results obtained for N. salmincola from North America (United States). The genetic differentiation within the Eurasian sample was 1.4%, that for the North American sample was 0.8%, and differentiation between the samples was 15.5%. High values of genetic divergence and completed sorting of mitochondrial haplotypes confirmed the species independence of the compared geographic forms of Nanophyetus.


Trematoda Nanophyetus nad1 haplotypes molecular phylogenetics taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butorina, T.E., Busarova, O.Yu., and Ermolenko, A.V., Parazity gol’tsov Salmonidae: Salvelinus) Golarktiki (Salmonid Parasites (Salmonidae: Salvelinus) of the Holarctic), Vladivostok: Dal’nauka, 2011.Google Scholar
  2. 2.
    Dragomeretskaya, A.G., Zelya, O.P., Trotsenko, O.E., and Ivanova, I.B., Social factors of the functioning of nanophyetiasis foci in the Amur region, Med. Parazitol. Parazit. Bolezni, 2014, no. 4, pp. 23–28.Google Scholar
  3. 3.
    Ermolenko, A.V., Besprozvannykh, V.V., Rumyantseva, E.E., and Voronok, V.M., Pathogens of trematodoses in humans in Primorskii krai, Med. Parazitol. Parazit. Bolezni, 2015, no. 2, pp. 6–10.Google Scholar
  4. 4.
    Sinovich, L.I. and Vostrikov, L.A., Trematody Dal’nego Vostoka, metodicheskie rekomendatsii (Trematodes of the Far East, Methodical Recommendations), Khabarovsk: Khabarovsk. Nauch.–Issled. Inst. Epidemiol. Mikrobiol., 1974, p.4.Google Scholar
  5. 5.
    Filimonova, L.V., The spread of nanophyetiasis in the territory of the Soviet Far East, Tr. Gel’mintol. Lab., Akad. Nauk SSSR, 1966, vol. 17, pp. 240–244.Google Scholar
  6. 6.
    Blair, D., Tkach, V.V., and Barton, D.P., Family Troglotrematidae Odhner, 1914, in Keys to the Trematoda, Wallingford, U.K.: CABI Publ., 2008, vol. 3, pp. 277–289.CrossRefGoogle Scholar
  7. 7.
    Blasco-Costa, I., Cutmore, S.C., Miller, T.L., and Nolan, M.J., Molecular approaches to trematode systematics: “best practice” and implications for future study, Syst. Parasitol., 2016, vol. 93, no. 3, pp. 295–306.CrossRefPubMedGoogle Scholar
  8. 8.
    Brunner, F. and Eizaguirre, C., Can environmental change affect host/parasite-mediated speciation?, Zoology, 2016, vol. 119, no. 4, pp. 384–394.CrossRefPubMedGoogle Scholar
  9. 9.
    Chapin, E.A., A new genus and species of trematode, the probable cause of salmon-poisoning in dogs, North Am. Vet., 1926, vol. 7, pp. 36–37.Google Scholar
  10. 10.
    Chelomina, G.N., Tatonova, Y.V., Hung, N.M., and Ngo, H.D., Genetic diversity of the Chinese liver fluke Clonorchis sinensis from Russia and Vietnam, Int. J. Parasitol., 2014, vol. 44, no. 11, pp. 795–810.CrossRefPubMedGoogle Scholar
  11. 11.
    Criscione, C.D and Blouin, M.S., Life cycles shape parasite evolution: Comparative population genetics of salmon trematodes, Evolution, 2004, vol. 58, no. 1, pp. 198–202.CrossRefPubMedGoogle Scholar
  12. 12.
    Gebhardt, G.A., Millemann, R.E., Knapp, S.E., and Nyberg, P.A., Salmon Poisoning’ disease. II. Secondary intermediate host susceptibility studies, J. Parasitol., 1966, vol. 52, pp. 54–59.CrossRefPubMedGoogle Scholar
  13. 13.
    Headley, S.A., Scorpio, D.G., Vidotto, O., and Dumler, J.S., Neorickettsia helminthoeca and salmon poisoning disease: A review, Vet. J., 2011, vol. 187, no. 2, pp. 165–173.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu, D., Nanophyetus, Molecular Detection of Human Parasitic Pathogens, Boca Raton: CRC Press, 2012, ch. 37, pp. 399–404.CrossRefGoogle Scholar
  15. 15.
    Liu, G.H., Li, B., Li, J.Y., et al., Genetic variation among Clonorchis sinensis isolates from different geographic regions in China revealed by sequence analyses of four mitochondrial genes, J. Helminthol., 2012, vol. 86, pp. 479–484.CrossRefPubMedGoogle Scholar
  16. 16.
    Mende, M.B. and Hundsdoerfer, A.K., Mitochondrial lineage sorting in action–historical biogeography of the Hyles euphorbiae complex (Sphingidae, Lepidoptera) in Italy, BMC Evol. Biol., 2013, vol. 13, pp. 83–25.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Miura, O., Kuris, A.M., Torchin, M.E., et al., Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse), Int. J. Parasitol., 2005, vl. 35, no. 7, pp. 793–801.CrossRefPubMedGoogle Scholar
  18. 18.
    Nadler, S.A. and Pérez-Ponce de León, G., Integrating molecular and morphological approaches for characterizing parasite cryptic species: Omplications for parasitology, Parasitology, 2011, vol. 138, pp. 1688–1709.CrossRefPubMedGoogle Scholar
  19. 19.
    Pinto, H.A., Griffin, M.J., Quiniou, S.M., et al., Biomphalaria straminea (Mollusca: Planorbidae) as an intermediate host of Drepanocephalus spp. (Trematoda: Echinostomatidae) in Brazil: A morphological and molecular study, Parasitol. Res., 2016, vol. 115, no. 1, pp. 51–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Posada, D. and Crandall. K.A., Selecting the best-fit model of nucleotide substitution, Syst. Biol., 2001, vol. 50, no. 4, pp. 580–601.CrossRefPubMedGoogle Scholar
  21. 21.
    Ronoquist, F. and Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, no. 12, pp. 1572–1574.CrossRefGoogle Scholar
  22. 22.
    Semyenova, S.K., Morozova, E.V., Chrisanfova, G.G., et al., Genetic differentiation in Eastern European and Western Asian populations of the liver fluke, Fasciola hepatica, as revealed by mitochondrial nad1 and cox genes, J. Parasitol., 2006, vol. 92, no. 3, pp. 525–530.CrossRefPubMedGoogle Scholar
  23. 23.
    Skrjabin, K.J. and Podjapolskaja, W.P., Nanophyetus schikhobalowi, n. sp., ein neuer Trematode aus dem Darm des Menschen, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. Orig., 1931, vol. 119, pp. 294–297.Google Scholar
  24. 24.
    Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thompson, J.D., Gibson, T.J., Plewniak, F., et al., The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, vol. 25, no. 24, pp. 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Truett, G.E., Heeger, P., Mynatt, R.L., et al., Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT), Biotechniques, 2000, vol. 29, no. 1, pp. 52–54.PubMedGoogle Scholar
  27. 27.
    Vaughan, J.A., Tkach, V.V., and Greiman, S.E., Neorickettsial endosymbionts of the Digenea: Diversity, transmission and distribution, Adv. Parasitol., 2012, vol. 79, pp. 253–297.CrossRefPubMedGoogle Scholar
  28. 28.
    Vilas, R., Criscione, C.D., and Blouin, M.S., A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites, Parasitology, 2005, vol. 131, part 6, pp. 839–846.CrossRefPubMedGoogle Scholar
  29. 29.
    Voronova, A.N., Chelomina, G.N., Bespozvannykh, V.V., and Tkach, V.V., Genetic divergence of human pathogens Nanophyetus spp. (Trematoda: Troglotrematidae) on the opposite sides of the Pacific Rim, Parasitology, 2017, vol. 144, no. 5, pp. 601–612.CrossRefPubMedGoogle Scholar
  30. 30.
    Witenberg, G., On the anatomy and systematic position of the causative agent of so-called salmon poisoning, J. Parasitol., 1932, vol. 18, no. 4, pp. 258–263.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Department of Biochemistry, Microbiology and BiotechnologyFar Eastern Federal UniversityVladivostokRussia

Personalised recommendations