Russian Journal of Marine Biology

, Volume 44, Issue 2, pp 87–93 | Cite as

The Role of Microorganisms in Transformation of Selenium in Marine Waters

  • N. V. Ivanenko


The activity of microorganisms is a decisive factor in the transformation of the essential and, at the same time, toxic selenium (Se) in marine waters. This review provides an analysis of the literature data on the microbiological regulation of the state of Se in marine waters: the role of microorganisms in eliminating toxic Se from marine waters through precipitation of reduced Se forms and in the reverse process, transformation of Se into a form available to be taken up by organisms and involvement of this element in the biogeochemical cycle. The processes of transformation of the oxidized and reduced Se forms with the participation of microorganisms in marine waters are considered. It has been shown that in anaerobic conditions bacteria use the oxidized Se forms as electron acceptors (reduction). Bioavailable selenite and selenate ions are formed in the case of aerobic oxidation. Biotransformation of dissolved Se is a key mechanism for the formation of methylated gaseous Se forms in marine waters as one of the ways to remove this element from the aquatic environment.


selenium marine waters microbiological transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryukhanova, N.N., Geochemistry of sulfur, selenium, tellurium, and associated elements in the Cenozoic deposits of the Baikal rift zone, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Irkutsk, 2007.Google Scholar
  2. 2.
    Golubkina, N.A., Spiridonova, T.S., Zaitsev, V.F., et al., Accumulation of selenium in aquatic organisms of the Caspian Sea, Yug Ross.: Ekol., Razvit., 2012, no. 1, pp. 77–80.Google Scholar
  3. 3.
    Golubkina, N.A., Kekina, E.G., and Nadezhkin, S.M., Prospects of enrichment of agricultural plants with iodine and selenium (review), Mikroelem. Med. (Moscow, Russ. Fed.), 2015, vol. 16, no. 3, pp. 12–19.Google Scholar
  4. 4.
    Ivanenko, N.V., Chemical and ecological evaluation of the coastal waters in the northwestern Sea of Japan, based on the selenium and arsenic content of the ecosystem components, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2002.Google Scholar
  5. 5.
    Kovekovdova, L.T., Ivanenko, N.V., Simokon, M.V., and Shcheglov, V.V., Arsenic and selenium in commercial aquatic organisms from the coastal waters of Primorsky Krai, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2001, vol. 129, pp. 3–8.Google Scholar
  6. 6.
    Lukyanova, O.N., Kovekovdova, L.T., Struppul, N.E., and Ivanenko, N.V., Selen v morskikh organizmakh (Selenium in Marine Organisms), Vladivostok: TINRO-Tsentr, 2006.Google Scholar
  7. 7.
    Minyuk, G.S. and Drobetskaya, I.V., The effect of selenium on the activity of marine and freshwater microalgae (review), Ekol. Morya, 2000, vol. 54, pp. 26–37.Google Scholar
  8. 8.
    Reunova, Yu.A., The effect of selenium on morphofunctional characteristics of the marine unicellular algae Dunaliella salina (Chlorophyta), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2007.Google Scholar
  9. 9.
    Reunova, Yu.A., Aizdaicher, N.A., Khristoforova, N.K., and Reunov, A.A., Effects of selenium on growth and ultrastructure of the marine unicellular alga Dunaliella salina (Chlorophyta), Russ. J. Mar. Biol., 2007, vol. 33, no. 2, pp. 125–132.CrossRefGoogle Scholar
  10. 10.
    Rusetskaya, N.Yu., Structural and functional patterns of the biological effect of chalcogen-organic compounds, Doctoral (Biol.) Dissertation, Rostov-on-Don, 2014.Google Scholar
  11. 11.
    Amouroux, D. and Donard, O.F.X., Evasion of selenium to the atmosphere via biomethylation processes in the Gironde estuary, France, Mar. Chem., 1997, vol. 58, nos. 1–2, pp. 173–188.CrossRefGoogle Scholar
  12. 12.
    Amouroux, D., Liss, P.S., Tessier, E., et al., Role of oceans as biogenic sources of selenium, Earth Planet. Sci. Lett., 2001, vol. 189, nos. 3–4, pp. 277–283.CrossRefGoogle Scholar
  13. 13.
    Amouroux, D., Pecheyran, C., and Donard, O.F.X., Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions, Appl. Organomet. Chem., 2000, vol. 14, no. 5, pp. 236–244.CrossRefGoogle Scholar
  14. 14.
    Baines, S.B. and Fisher, N.S., Interspecific differences in the bioconcentration of selenite by phytoplankton and their ecological implications, Mar. Ecol.: Prog. Ser., 2001, vol. 213, pp. 1–12.CrossRefGoogle Scholar
  15. 15.
    Baines, S.B., Fisher, N.S., Doblin, M.A., and Cutter, G.A., Uptake of dissolved organic selenides by marine phytoplankton, Limnol. Oceanogr., 2001, vol. 46, no. 8, pp. 1936–1944.CrossRefGoogle Scholar
  16. 16.
    Bender, J., Lee, R.F., and Phillips, P., Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation, J. Ind. Microbiol., 1995, vol. 14, no. 2, pp. 113–118.CrossRefGoogle Scholar
  17. 17.
    Besser, J.M., Canfield, T.J., and La Point, T.W., Bioaccumulation of organic and inorganic selenium in laboratory food chain, Environ. Toxicol. Chem., 1993, vol. 12, no. 1, pp. 57–72.CrossRefGoogle Scholar
  18. 18.
    Bowie, G.L. and Grieb, T.M., A model framework for assessing the effects of selenium on aquatic ecosystems, Water, Air, Soil Pollut., 1991, vols. 57–58, pp. 13–22.CrossRefGoogle Scholar
  19. 19.
    Chapman, P.M., Adams, W.J., Brooks, M.L., et al., Ecological Assessment of Selenium in the Aquatic Environment: Summary of a SETAC Pellston Workshop, Pensacola, FL: Soc. Environ. Toxicol. Chem., 2009.Google Scholar
  20. 20.
    Cutter, G.A., The estuarine behaviour of selenium in San Francisco Bay, Estuarine, Coastal Shelf Sci., 1989, vol. 28, no. 1, pp. 13–34.CrossRefGoogle Scholar
  21. 21.
    Cutter, G.A. and Bruland, K.W., The marine biogeochemistry of selenium: A re-evaluation, Limnol. Oceanogr., 1984, vol. 29, no. 6, pp. 1179–1192.CrossRefGoogle Scholar
  22. 22.
    Cutter, G.A. and Cutter, L.S., Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean, Mar. Chem., 1995, vol. 49, no. 4, pp. 295–306.CrossRefGoogle Scholar
  23. 23.
    Dowdle, P.R. and Oremland, R.S., Microbial oxidation of elemental selenium in soil slurries and bacterial cultures, Environ. Sci. Technol., 1998, vol. 32, pp. 3749–3755.CrossRefGoogle Scholar
  24. 24.
    Draft Screening Assessment. Selenium and Its Compounds, Ottawa: Environment Canada, Health Canada, 2015. Accessed May 27, 2017.
  25. 25.
    Dungan, R.S. and Frankenberger, W.T., Microbial transformations of selenium and the bioremediation of seleniferous environments, Biorem. J., 1999, vol. 3, no. 3, pp. 171–188.CrossRefGoogle Scholar
  26. 26.
    Fan, T.W.-M., Higashi, R.M., and Lane, A.N., Biotransformations of selenium oxyanion by filamentous cyanophyte-dominated mat cultured from agricultural drainage waters, Environ. Sci. Technol., 1998, vol. 32, no. 20, pp. 3185–3193.CrossRefGoogle Scholar
  27. 27.
    Fatoki, O.S., Biomethylation in the natural environment: A review, S. Afr. J. Sci., 1997, vol. 93, no. 8, pp. 366–370.Google Scholar
  28. 28.
    Fordyce, F.M., Selenium deficiency and toxicity in the environment, Essentials of Medical Geology, Dordrecht: Springer, 2013, ch. 16, pp. 375–415.CrossRefGoogle Scholar
  29. 29.
    Garrett, R.G., Natural distribution and abundance of elements, Essentials of Medical Geology: Impacts of the Natural Environment on Public Health, Burlington, MA: Elsevier, 2005, ch. 2, pp. 17–41.Google Scholar
  30. 30.
    Gladyshev, V.N., Comparative and functional genomics of mammalian selenoprotenomes, Trace Elem. Med. (Moscow), 2013, vol. 14, no. 4, p.4.Google Scholar
  31. 31.
    Gobler, C.J., Hutchins, D.A., Fisher, N.S., et al., Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte, Limnol. Oceanogr., 1997, vol. 42, no. 7, pp. 1492–1504.CrossRefGoogle Scholar
  32. 32.
    Gouget, B., Avoscan, L., Sarret, G., et al., Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV, Radiochim. Acta, 2005, vol. 93, pp. 683–689.CrossRefGoogle Scholar
  33. 33.
    Heider, J. and Böck, A., Selenium metabolism in microorganisms, Adv. Microb. Physiol., 1993, vol. 35, pp. 71–109.CrossRefPubMedGoogle Scholar
  34. 34.
    Johnson, T.M., A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes, Chem. Geol., 2004, vol. 204, no. 3, pp. 201–214.CrossRefGoogle Scholar
  35. 35.
    Kai, N., Ueda, T., Nagatomo, K., et al., The oxidation state and its distribution of selenium in the ocean–II. The vertical distribution of selenium in the Pacific Ocean and the Bay of Bengal, J. Shimonoseki Univ. Fish., 1993, vol. 41, no. 2, pp. 61–64.Google Scholar
  36. 36.
    Lemly, A.D. and Smith, G.J., Aquatic Cycling of Selenium: Implications for Fish and Wildlife, Vol. 12: Fish and Wildlife Leaflet, Washington: U.S. Fish and Wildlife Service, 1987.Google Scholar
  37. 37.
    Luxem, K.E., Vriens, B., Wagner, B., et al., Selenium uptake and volatilization by marine algae, EGU Gen. Assem. Conf. Abstr., 2015, vol. 17, no. EGU2015-6613.Google Scholar
  38. 38.
    Maher, W.A., Selenium in macroalgae, Bot. Mar., 1985, vol. 28, no. 7, pp. 269–273.CrossRefGoogle Scholar
  39. 39.
    Maher, W., Roach, A., Doblin, M., et al., Environmental sources, speciation, and partitioning of selenium, Ecological Assessment of Selenium in the Aquatic Environment, Pensacola, FL: CRC Press, 2010, ch. 4, pp. 47–92.CrossRefGoogle Scholar
  40. 40.
    Martin, A.J., Simpson, S., Fawcett, S., et al., Biogeochemical mechanisms of selenium exchange between water and sediments in two contrasting lentic environments, Environ. Sci. Technol., 2011, vol. 45, no. 7, pp. 2605–2612.CrossRefPubMedGoogle Scholar
  41. 41.
    Measures, C.I. and Burton, J.D., The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes, Earth Planet. Sci. Lett., 1980, vol. 46, no. 3, pp. 385–396.CrossRefGoogle Scholar
  42. 42.
    Mishra, R.R., Prajapati, S., Das, J., et al., Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product, Chemosphere, 2011, vol. 84, no. 9, pp. 1231–1237.CrossRefPubMedGoogle Scholar
  43. 43.
    Mitchell, K.A., Biogeochemistry of selenium isotopes: processes, cycling and paleoenvironmental applications, Utrecht Stud. Earth Sci., 2012, no. 24. Accessed May 20, 2017.
  44. 44.
    Nakaguchi, Y., Takei, M., Hattori, H., et al., Dissolved selenium species in the Sulu Sea, the South China Sea and the Celebes Sea, Geochem. J., 2004, vol. 38, no. 6, pp. 571–580.CrossRefGoogle Scholar
  45. 45.
    Neumann, P.M., De Souza, M.P., Pickering, I.J., and Terry, N., Rapid microalgal metabolism of selenate to volatile dimethylselenide, Plant, Cell Environ., 2003, vol. 26, no. 6, pp. 897–905.CrossRefGoogle Scholar
  46. 46.
    Orr, P.L., Guiguer, K.R., and Russel, C.K., Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed, Ecotoxicol. Environ. Saf., 2006, vol. 63, no. 2, pp. 175–188.CrossRefPubMedGoogle Scholar
  47. 47.
    Oyamada, N., Takahashi, G., and Ishizaki, M., Methylation of inorganic selenium compounds by freshwater green algae, Ankistrodesmus sp., Chlorella vulgaris and Selenastrum sp., Eisei Kagaku, 1991, vol. 37, no. 2, pp. 83–88.CrossRefGoogle Scholar
  48. 48.
    Patterson, E.L., Milstrey, R., and Stokstad, E.L., Effect of selenium in preventing exudative diathesis in chicks, Proc. Soc. Exp. Biol. Med., 1957, vol. 95, no. 4, pp. 617–620.CrossRefPubMedGoogle Scholar
  49. 49.
    Pinsent, J., The need for selenite and molybdate in the formation of formic dehydrogenase by members of the Coli-aerogenes group of bacteria, Biochem. J., 1954, vol. 57, no. 1, pp. 10–16.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Reamer, D.C. and Zoller, W.H., Selenium biomethylation products from soil and sewage sludge, Science, 1980, vol. 208, no. 4443, pp. 500–502.CrossRefPubMedGoogle Scholar
  51. 51.
    Saiki, M.K., Jennings, M.R., and Brumbaugh, W.G., Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries, California, Arch. Environ. Contam. Toxicol., 1993, vol. 24, no. 3, pp. 307–319.CrossRefPubMedGoogle Scholar
  52. 52.
    Sarathchandra, S.U. and Watkinson, J.H., Oxidation of elemental selenium to selenite by Bacillus megaterium, Science, 1981, vol. 211, no. 4482, pp. 600–601.CrossRefPubMedGoogle Scholar
  53. 53.
    Schwarz, K. and Foltz, C.M., Selenium as an integral part of factor 3 against dietary necrotic liver degeneration, J. Am. Chem. Soc., 1957, vol. 79, no. 12, pp. 3292–3293.CrossRefGoogle Scholar
  54. 54.
    Shakibaie, M., Salari Mohazab, N., and Ayatollahi Mousavi, S.A., Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans, Jundishapur J. Microbiol., 2015, vol. 8, no. 9, p. e26381.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Staicu, L.C., Ackerson, C.J., Cornelis, P., et al., Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions, J. Appl. Microbiol., 2015, vol. 119, no. 2, pp. 400–410.CrossRefPubMedGoogle Scholar
  56. 56.
    Stolz, J.F. and Oremland, R.S., Bacterial respiration of arsenic and selenium, FEMS Microbiol. Rev., 1999, vol. 23, pp. 615–627.CrossRefPubMedGoogle Scholar
  57. 57.
    Suzuki, Y., Miyake, Y., Saruhashi, K., and Sugimura, Y., A cycle of selenium in the ocean, Pap. Meteorol. Geophys., 1979, vol. 30, nos. 3–4, pp. 185–189.Google Scholar
  58. 58.
    Takayanagi, K. and Wong, G.T.F., Organic and colloidal selenium in southern Chesapeake Bay and adjacent waters, Mar. Chem., 1983, vol. 14, no. 2, pp. 141–148.CrossRefGoogle Scholar
  59. 59.
    Tessier, E., Amouroux, D., Abril, G., et al., Formation and volatilisation of alkyl-iodides and -selenides in macrotidal estuaries, Biogeochemistry, 2002, vol. 59, nos. 1–2, pp. 183–206.CrossRefGoogle Scholar
  60. 60.
    Wrench, J.J., Organic selenium in seawater: Levels, origins and chemical forms, Mar. Chem., 1983, vol. 12, nos. 2–3, p.237.CrossRefGoogle Scholar
  61. 61.
    Xu, X.-M., Carlson, B., Zhang, Y., et al., New developments in selenium biochemistry: Selenocysteine biosynthesis in eukaryotes and archaea, Biol. Trace Elem. Res., 2007, vol. 119, no. 3, pp. 234–241.CrossRefPubMedGoogle Scholar
  62. 62.
    Yang, Y. and Hu, M., Uptake and transformation of selenium by marine phytoplankton, J. Appl. Oceanogr., 1996, vol. 4, pp. 319–323.Google Scholar
  63. 63.
    Zhang, Y. and Gladyshev, V.N., Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) Project, PLoS Genet., 2008, vol. 4, no. 6, p. e1000095.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhou, Z.G., Li, P.F., Liu, Z.L., et al., Study on the accumulation of selenium and its binding to the proteins, polysaccharides and lipids from Spirulina maxima, S. platensis and S. subsalsa, Oceanol. Limnol. Sin., 1997, vol. 28, no. 4, pp. 363–370.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vladivostok State University of Economics and ServiceVladivostokRussia

Personalised recommendations