Skip to main content
Log in

The functional morphology of erythrocytes of the black scorpion fish Scorpaena porcus (Linnaeus, 1758) (scorpaeniformes: scorpaenidae) during hypoxia

  • Ecological Physiology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The influence of hypoxia on the morphological characteristics of circulating erythrocytes of the scorpion fish Scorpaena porcus (Linnaeus, 1758) has been investigated in an in vivo experiment. Under a 4-h adaptation of the fish to the conditions of ranked hypoxia their erythrocytes demonstrated a number of consecutive reactions. The volume and the surface area of the red blood cells was reduced by 4–5% (p < 0.001) at an oxygen concentration of 2.6 mg/L (30% saturation of water with oxygen) and increased by 4% (p < 0.001) at a concentration of 1.3 mg/L (15% saturation), relative to the control values (normoxia: 7–8 mg/L). The observed reaction of erythrocytes coincided quantitatively and qualitatively (the order of events) with the results of the experiments we performed previously in vitro. Our study has shown that the physiology of the black scorpion fish is tolerant to hypoxia and allows autonomous functioning of red blood cells under conditions of oxygen deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreeva, A.Yu. and Soldatov, A.A., The change in the volume of nuclear erythrocytes of the scorpionfish under conditions of external hypoxia (experiments in vitro), Dop. Nats. Akad. Nauk Ukr., 2012, no. 10, pp. 149–153.

    Google Scholar 

  2. Zolotnitskaya, R.P., Methods of hematological research, in Laboratornye metody issledovaniya v klinike: spravochnik (Laboratory Methods of Research in the Clinic: Reference Book), Moscow: Meditsina, 1987, pp. 106–148.

    Google Scholar 

  3. Savina, M.V., Mekhanizmy adaptatsii tkanevogo dykhaniya v evolyutsii (Mechanisms of Adaptation of Tissue Respiration in the Evolution of Vertebrates), Moscow: Nauka, 1992.

    Google Scholar 

  4. Tashke, K., Vvedenie v kolichestvennuyu tsitologicheskuyu morfologiyu (Introduction to Quantitative Cytological Morphology), Bucharest: Akad. Sots. Resp. Rumynii, 1980.

    Google Scholar 

  5. Chizhevskii, A.L., Strukturnyi analiz dvizhushcheisya krovi (Structural Analysis of Moving Blood), Moscow: Akad. Nauk SSSR, 1959.

    Google Scholar 

  6. Adragna, N.C., Di Fulvio, M., and Lauf, P.K., Regulation of K-Cl cotransport: from function to genes, J. Membr. Biol., 2004, vol. 201, no. 3, pp. 109–137.

    Article  CAS  PubMed  Google Scholar 

  7. Chew, S.F., Gan, J., and Ip, Y.K., Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in mud, Physiol. Biochem. Zool., 2005, vol. 78, no. 4, pp. 620–629.

    Article  CAS  PubMed  Google Scholar 

  8. Crocker, C.E. and Cech, J.J., Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus, J. Comp. Physiol. B, 1998, vol. 168, no. 1, pp. 50–60.

    Article  CAS  Google Scholar 

  9. Ferguson, R.A. and Boutilier, R.G., Metabolic energy production during adrenergic pH regulation in red cells of the Atlantic salmon, Salmo salar, Respir. Physiol., 1988, vol. 74, no. 1, pp. 65–76.

    Article  CAS  PubMed  Google Scholar 

  10. Gewin, V., Dead in the water, Nature, 2010, vol. 466, no. 7308, pp. 812–814.

    Article  CAS  PubMed  Google Scholar 

  11. Gilles, C. and Motais, R., Effect of catecholamines on deformability of red cells from trout: Relative roles of cyclic AMP and cell volume, J. Physiol., 1989, vol. 412, no. 1, pp. 321–332.

    Article  Google Scholar 

  12. Girish, V. and Vijayalakshmi, A., Affordable image analysis using NIH Image/Image J, Indian J. Cancer, 2004, vol. 41, no. 1, pp. 41–47.

    Google Scholar 

  13. Hochachka, P.W. and Somero, G.N., Biochemical Adaptation: Mechanism and Process in Physiological Evolution, Oxford: Oxford Univ., 2002.

    Google Scholar 

  14. Houchin, D.N., Munn, J.I., and Parnell, B.L., A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area, Blood, 1958, vol. 13, pp. 1185–1191.

    CAS  PubMed  Google Scholar 

  15. Jensen, F.B., Regulatory volume decrease in carp red blood cells: Mechanisms and oxygenation-dependency of volume-activated potassium and amino acid transport, J. Exp. Biol., 1995, vol. 198, pp. 155–165.

    CAS  PubMed  Google Scholar 

  16. Jensen, F.B., Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport, Acta Physiol. Scand., 2004, vol. 182, no. 3, pp. 215–227.

    Article  CAS  PubMed  Google Scholar 

  17. Levin, L.A., Oxygen minimum zone influence on the community structure of deep-sea benthos, in Proc. 6th Int. Symp. “Fish Physiology, Toxicology, and Water Quality,” La Paz, B. C. S., Mexico, 2002, p.121.

    Google Scholar 

  18. Middelburg, J.J. and Levin, L.A., Coastal hypoxia and sediment biogeochemistry, Biogeosci. Discuss., 2009, vol. 6, no. 2, pp. 3655–3706.

    Article  Google Scholar 

  19. Mommsen, T.P., French, C.J., and Hochachka, P.W., Sites and patterns of protein and amino acid utilization during the spawning migration of salmon, Can. J. Zool., 1980, vol. 58, no. 10, pp. 1785–1799.

    Article  CAS  Google Scholar 

  20. Motais, R., Borgese, F., and Fievet, B., Regulation of Na+/H+ exchange and pH in erythrocytes of fish, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1992, vol. 102, no. 4, pp. 597–602.

    Article  CAS  Google Scholar 

  21. Nikinmaa, M., Control of red cell pH in teleost fishes, Ann. Zool. Fenn., 1986, vol. 23, no. 2, pp. 223–235.

    Google Scholar 

  22. Nikinmaa, M., Adrenergic control of oxygen transport in salmonids, Fisch.-Forsch., 1991, vol. 29, no. 3, pp. 64–65.

    Google Scholar 

  23. Perry, S.F., Fritsche, R., Hoagland, T.M., et al., The control of blood pressure during external hypercapnia in the rainbow trout (Oncorhynchus mykiss), J. Exp. Biol., 1999, vol. 202, no. 16, pp. 2177–2190.

    CAS  PubMed  Google Scholar 

  24. Perry, S.F. and Wood, Ch.M., Control and coordination of gas transfer in fishes, Can. J. Zool., 1989, vol. 67, no. 12, pp. 2961–2970.

    Article  Google Scholar 

  25. Reid, S.G. and Perry, S.F., Cholinoceptor-mediated control of catecholamine release from chromaffin cells in the American eel, Anguilla rostrata, J. Comp. Physiol. B, 1995, vol. 165, no. 6, pp. 464–470.

    Article  CAS  PubMed  Google Scholar 

  26. Soldatov, A.A., Peculiarities of organization and functioning of the fish red blood system, J. Evol. Biochem. Physiol., 2005, vol. 41, no. 3, pp. 272–281.

    Article  CAS  Google Scholar 

  27. Soldatov, A.A., Andreenko, T.I., Golovina, I.V., and Stolbov, A.Y., Peculiarities of organization of tissue metabolism in molluscs with different tolerance to external hypoxia, J. Evol. Biochem. Physiol., 2010, vol. 46, no. 4, pp. 341–349.

    Article  CAS  Google Scholar 

  28. Soldatov, A.A., Andreeva, A.Yu., Novitskaya, V.N., and Parfenova, I.A., Coupling of membrane and metabolic functions in nucleated erythrocytes of Scorpaena porcus L. under hypoxia in vivo and in vitro, J. Evol. Biochem. Physiol., 2014, vol. 50, no. 5, pp. 409–415.

    Article  CAS  Google Scholar 

  29. Soldatov, A.A., Parfyonova, I.A., and Konoshenko, S.V., Haemoglobin system of Black Sea round goby under experimental hypoxia conditions, Ukr. Biokhim. Zh., 2004, vol. 76, no. 3, pp. 85–90.

    CAS  Google Scholar 

  30. Stoeck, T., Taylor, G.T., and Epstein, S.S., Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea), Appl. Environ. Microbiol., 2003, vol. 69, no. 9, pp. 5656–5663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tufts, B., In vitro evidence for sodium-dependent pH regulation in sea lamprey Petromyzon marinus red blood cells, Can. J. Zool., 1992, vol. 70, no. 3, pp. 411–416.

    Article  CAS  Google Scholar 

  32. Val, A.L., De Menezes, G.C., and Wood, C.M., Red blood cell adrenergic responses in Amazonian teleosts, J. Fish Biol., 1997, vol. 52, no. 1, pp. 83–93.

    Article  Google Scholar 

  33. Van Waarde, A., Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1988, vol. 91, no. 2, pp. 207–228.

    Article  Google Scholar 

  34. Wells, R.M.G., Blood gas transport and hemoglobin function: adaptations for functional and environmental hypoxia, Fish Physiol., 2009, vol. 27, pp. 255–299.

    Article  Google Scholar 

  35. Wood, C.M. and Simmons, H., The conversion of plasma HCO3-to CO2 by rainbow trout red blood cells in vitro: Adrenergic inhibition and the influence of oxygenation status, Fish Physiol. Biochem., 1994, vol. 12, no. 6, pp. 445–454.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soldatov.

Additional information

Original Russian Text © A.A. Soldatov, T.A. Kukhareva, A.Yu. Andreeva, I.A. Parfenova, V.N. Rychkova, D.S. Zin’kova, 2017, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.A., Kukhareva, T.A., Andreeva, A.Y. et al. The functional morphology of erythrocytes of the black scorpion fish Scorpaena porcus (Linnaeus, 1758) (scorpaeniformes: scorpaenidae) during hypoxia. Russ J Mar Biol 43, 368–373 (2017). https://doi.org/10.1134/S1063074017050091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074017050091

Keywords

Navigation