Advertisement

Russian Journal of Marine Biology

, Volume 43, Issue 2, pp 164–170 | Cite as

The dynamics of heat production in erythrocytes of the scorpion fish (Scorpaena porcus Linnaeus, 1758) in vitro

  • Yu. A. Silkin
  • A. Ya. Stolbov
  • E. N. Silkin
  • M. Yu. Silkin
Biophysics
  • 20 Downloads

Abstract

Temperature measurements in a plastic tube isolated from external influences containing an erythrocyte suspension of the scorpion fish (Scorpaena porcus Linnaeus, 1758) showed that these red blood cells are able to generate heat. Heat release in the cell suspension was expressed by a linear temperature increase in the tube during the entire experiment. Addition of extracellular ATP (1 mg mL–1) caused the effect of a thermal shift: a sharp temperature rise in the cell suspension for 30–60 s. We believe that the heat release was caused by hydrolysis of extracellular ATP by membrane ecto-ATPase. Inhibition of ecto-ATPase activity through the addition of EDTA (1 mM) to the erythrocyte suspension led to complete blockage of heat release; the effect of the thermal shift ceased. We assume that thermal properties of red blood cells play an important role in blood hemodynamics, especially in providing the “non-Newtonian” properties of blood. The thermal phenomena observed in suspensions of fish erythrocytes open new scientific directions in exploring the capabilities of multifunctional extracellular ATP.

Keywords

temperature heat production red blood cells ATP membrane ecto-ATPase fish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Venkstern, T.V. and Engelhardt, V.A., The surfacelocalized adenosine polyphosphatase of nuclear erythrocytes, Dokl. Akad. Nauk SSSR, 1955, vol. 102, no. 1, pp. 133–136.PubMedGoogle Scholar
  2. 2.
    Venkstern, T.V. and Engelhardt, V.A., Distribution of ecto-adenosinpolyphosphatase and characterization of some of its properties, Biochemistry, 1957, vol. 22, no. 5, pp. 911–916.Google Scholar
  3. 3.
    Evans, E.A. and Skalak, R., Mechanics and Thermodynamics of Biomembranes, Boca Raton, FL: CRC, 1980.Google Scholar
  4. 4.
    Katiukhin, L.N., About a mechanism of the influence of shear stress for viscosity of the blood in vessels of small diameter, ScienceRise, 2014, vol. 5, no. 4 (5), pp. 24–29.CrossRefGoogle Scholar
  5. 5.
    Murav’ev, A.V., Tikhomirova, I.A., Maimistova, A.A., et al., The role of the microrheological properties of erythrocytes in non-Newtonian behavior of whole blood, Ross. Zh. Biomekhaniki, 2010, vol. 14, no. 4, pp. 96–104.Google Scholar
  6. 6.
    Silkin, Yu.A. and Silkina, E.N., Mg-Dependent Ecto-ATPase of the erythrocyte plasma membrane of the scorpion fish Scorpaena porcus: Biochemical properties and kinetic characteristics, J. Evol. Biochem. Phyiol., 2000, vol. 36, no. 5, pp. 519–524.Google Scholar
  7. 7.
    Silkin, Yu.A., Silkina, E.N., and Stolbov, A.Ya., Analysis of thermal phenomena in erythrocytes from the scorpion fish (Scorpaena porcus L.), Biophysics, 2014, vol. 59, no. 6, pp. 890–893.CrossRefGoogle Scholar
  8. 8.
    Soldatov, A.A., Parfenova, I.A., and Nowicka, V.N., The content of monovalent cations and ATP in erythrocytes of sea fish in experimental hypoxia, Ukr. Biokhim. Zh., 2010, vol. 82, no. 2, pp. 36–41.Google Scholar
  9. 9.
    Hochachka, P.W. and Somero, G.N., Biochemical Adaptation: Mechanisms and Process in Physiological Evolution, Princeton, NJ: Princeton Univ. Press, 1984.CrossRefGoogle Scholar
  10. 10.
    Bencic, D.C., Yates, T.J., and Ingermann, R.L., Ecto-ATPase activity of vertebrate blood cells, Physiol. Zool., 1997, vol. 70, no. 6, pp. 621–630.CrossRefPubMedGoogle Scholar
  11. 11.
    Burnstock, G. and Ralevic, V., Purinergic signaling and blood vessels in health and disease, Pharmacol. Rev., 2014, vol. 66, pp. 102–192.CrossRefPubMedGoogle Scholar
  12. 12.
    Chien, S., Usami, S., Dellenback, R.J., et al., Comparative hemorheology–hematological implications of species differences in blood viscosity, Biorheology, 1971, vol. 8, no. 1, pp. 35–57.PubMedGoogle Scholar
  13. 13.
    Ellsworth, M.L., Ellis, C.G., Goldman D., et al., Erythrocytes: oxygen sensors and modulators of vascular tone in regions of low PO2, Physiology (Bethesda), 2009, vol. 24, pp. 107–116.CrossRefGoogle Scholar
  14. 14.
    Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function, Gerasimovskaya, E. and Kaczmarek, E., Eds., New York: Springer-Verlag, 2010.Google Scholar
  15. 15.
    Fâhraeus, R. and Lindqvist, T., The viscosity of the blood in narrow capillary tubes, Am. J. Physiol., 1931, vol. 96, pp. 562–568.Google Scholar
  16. 16.
    Jensen, F.B., Agnisola, C., and Novak, I., ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2009, vol. 152, pp. 351–356.CrossRefGoogle Scholar
  17. 17.
    Katiukhin, L.N., About a mechanism of the Fâhraeus-Lindqvist effect, J. Blood Disord. Transfus., 2014, vol. 5, no. 5, pp. 211–213.Google Scholar
  18. 18.
    Minakami. S. and Verdier. C., Calorimetric study on human erythrocyte glycolysis, Eur. J. Biochem., 1976, vol. 65, pp. 451–460.CrossRefPubMedGoogle Scholar
  19. 19.
    Miseta, A., Bogner, P., and Berenyi, E., Relationship between cellular ATP, potassium, sodium and magnesium concentration in mammalian and avian erythrocytes, Biochim. Biophys. Acta, 1993, vol. 1175, pp. 133–139.CrossRefPubMedGoogle Scholar
  20. 20.
    Moyes, C.D., Sharma, M.L., Lyons, C., et al., Origins and consequences of mitochondrial decline in nucleated erythrocytes, Biochim. Biophys. Acta, 2002, vol. 1591, pp. 11–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Philips, M.C., Moyes, C.D., and Tufts, B.L., The effects of cell aging on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells, J. Exp. Biol., 2000, vol. 203, pp. 1039–1045.Google Scholar
  22. 22.
    Snyder, G.K. and Sheafor, B.A., Red blood cells: centerpiece in the evolution of the vertebrate circulatory system, Am. Zool., 1999, vol. 39, pp. 189–198.CrossRefGoogle Scholar
  23. 23.
    Stolbov, A.Y., Mishurov, V.G., and Shadrin, N.V., The macrocalorimetric method in hydrobiology: Description of the pilot device, Ekol. Morya, 2009, vol. 77, pp. 94–96.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. A. Silkin
    • 1
  • A. Ya. Stolbov
    • 1
  • E. N. Silkin
    • 1
  • M. Yu. Silkin
    • 1
  1. 1.Vyazemsky Karadag Scientific StationNature Reserve of the Russian Academy of SciencesFeodosiaRussia

Personalised recommendations