Russian Journal of Marine Biology

, Volume 43, Issue 2, pp 171–175 | Cite as

The genotoxicity of copper oxide nanoparticles to marine organisms based on the example of the Pacific mussel Mytilus trossulus gould, 1850 (Bivalvia: Mytilidae)

  • S. P. Kukla
  • V. V. Slobodskova
  • V. P. Chelomin


The accumulation of CuO nanoparticles causes destructive changes in the DNA molecule in the gill and digestive gland cells of the Pacific mussel Mytilus trossulus. The gill cells of the mollusk were found to be more sensitive to the genotoxic effect of CuO nanoparticles than the digestive-gland cells.


bivalves Mytilus trossulus nanoparticles genotoxicity DNA destruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slobodskova, V.V., Kukla, S.P., and Chelomin, V.P., An analysis of the quality of the marine environment based on determination of the genotoxicity of DNA in the gill cells of the Yesso Scallop, Mizuhopecten yessoensis (Jay, 1856), Russ. J. Mar. Biol., 2015, vol. 41, no. 6, pp. 495–498.CrossRefGoogle Scholar
  2. 2.
    Ahamed, M., Siddiqui, M.A., Akhtar, M.J., et al., Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells, Biochem. Biophys. Res. Commun., 2010, vol. 396, pp. 578–583.CrossRefPubMedGoogle Scholar
  3. 3.
    Arora, S., Rajwade, J.M., and Paknikar, K.M., Nanotoxicology and in vitro studies: The need of the hour, Toxicol. Appl. Pharmacol., 2012, vol. 258, pp. 151–165.CrossRefPubMedGoogle Scholar
  4. 4.
    Baker, T.J., Tyler, C.R., and Galloway, T.S., Impacts of metal and metal oxide nanoparticles on marine organisms, Environ. Pollut., 2014, vol. 186, pp. 257–271.CrossRefPubMedGoogle Scholar
  5. 5.
    Beninger, P.G., Le Pennec, M., and Donval, A., Mode of particle ingestion in five species of suspension-feeding bivalve mollusks, Mar. Biol., 1991, vol. 108, pp. 255–261.CrossRefGoogle Scholar
  6. 6.
    Bondarenko, O., Juganson, K., Ivask, A., et al., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review, Arch. Toxicol., 2013, vol. 87, pp. 1181–1200.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Buffet, P.E., Tankoua, O.F., Pan, J.F., et al., Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles, Chemosphere, 2011, vol. 84, pp. 166–174.CrossRefPubMedGoogle Scholar
  8. 8.
    Garnett, M. and Kallinteri, P., Nanomedicines and nanotoxicology: Some physiological principles, Occup. Med., 2006, vol. 56, pp. 307–311.CrossRefGoogle Scholar
  9. 9.
    Gomes T., Araújo O., Pereira, R., et al., Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis, Mar. Environ. Res., 2013, vol. 84, pp. 51–59.CrossRefPubMedGoogle Scholar
  10. 10.
    Hanna, S.K., Miller, R.J., Zhou, D., et al., Accumulation and toxicity of metal oxide nanoparticles in a softsediment estuarine amphipod, Aquat. Toxicol., 2013, vol. 142–143, pp. 441–446.Google Scholar
  11. 11.
    Isani, G., Falcioni, M.L., Barucca, G., et al., Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout, Ecotoxicol. Environ. Saf., 2013, vol. 97, pp. 40–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Marnett, L.J., Oxyradicals and DNA damage, Carcinogenesis, 2000, vol. 21, pp. 361–370.CrossRefPubMedGoogle Scholar
  13. 13.
    Mitchelmore, C.L., Birmelin, C., Livingstone, D.R., and Chipman, J.K., Detection of DNA strand breaks in isolated mussels (Mytilus edulis) digestive gland cells using the Comet assay, Ecotoxicol. Environ. Saf., 1998, vol. 41, pp. 51–58.CrossRefPubMedGoogle Scholar
  14. 14.
    Moore, M.N., Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environ. Int., 2006, vol. 32, pp. 967–976.CrossRefPubMedGoogle Scholar
  15. 15.
    Shaw, B.J. and Handy, R.D., Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions, Environ. Int., 2011, vol. 37, pp. 1083–1097.CrossRefPubMedGoogle Scholar
  16. 16.
    Singh, N., Manshian, B., Jenkins, G.J.S., et al., NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials, Biomaterials, 2009, vol. 30, pp. 3891–3914.CrossRefPubMedGoogle Scholar
  17. 17.
    Suh, W.H., Suslic, K.S., Stucky, Y.D., and Suh, Y.-H., Nanotoxicology and neuroscience, Prog. Neurobiol., 2009, vol. 87, pp. 133–170.CrossRefPubMedGoogle Scholar
  18. 18.
    Ward, J.E. and Kach, D.J., Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves, Mar. Environ. Res., 2009, vol. 68, no. 3, pp. 137–142.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. P. Kukla
    • 1
  • V. V. Slobodskova
    • 1
  • V. P. Chelomin
    • 1
  1. 1.Il’ichev Pacific Oceanological Institute, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations