Skip to main content

Taxonomic status of Euphylliidae corals in Peninsular Malaysia based on morphological structures and phylogenetic analyses using mitochondrial COI gene


The morphological and molecular studies provide greater taxonomic resolution for the scleractinian coral identification. The Euphylliidae corals are among the scleractinian family for which their corallite and polyp morphologies have been examined for species identification. However, knowledge on the molecular study for coral identification in Malaysia is very limited. Therefore, this study aimed to examine the morphological structures and phylogenetic analyses for six Euphylliidae coral species using the mitochondrial gene of cytochrome oxidase subunit I (COI). The results showed that the Euphylliidae corals are present under both “complex” and “robust” coral clades as supported by many researchers. The result also revealed that the species phylogeny of Euphylliidae corals is in concordances with its morphological structures of corallites. It can be concluded the combination between morphological structures and phylogenetic analyses provide more accurate identification than relying on morphological study alone. Hence, it provides a future direction for the scleractinian research progress in species identification.

This is a preview of subscription content, access via your institution.


  1. Arrigoni, R., Stefani, F., Pichon, M., et al., Molecular phylogeny of the robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): An Indian Ocean perspective, Mol. Phylogenet. Evol., 2012, vol. 65, pp. 183–193.

    Article  PubMed  Google Scholar 

  2. Benzoni, F., Stefani, F., Stolarski, J., et al., Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences, Contrib. Zool., 2007, vol. 76, pp. 35–54.

    Google Scholar 

  3. Chen, C.A., Wallace, C.C., and Wolstenholme, J., Analysis of the mitochondrial 12S rDNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals, Mol. Phylogenet. Evol., 2002, vol. 23, pp. 137–149.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, I.P., Tang, C.Y., Chiou, C.Y., et al., Comparative analysis of coding and noncoding DNA regions indicate that Acropora (Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs. mitochondrial genomes as in plants, Mar. Biotechnol., 2009, vol. 11, pp. 141–152.

    Article  CAS  PubMed  Google Scholar 

  5. Forsman, Z.H., Barshis, D.J., Hunter, C.L., et al., Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites, BMC Evol. Biol., 2009, vol. 9, p. 45.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fukami, H., Chen, C.A., Budd, A.F., et al., Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (order Scleractinia, class Anthozoa, phylum Cnidaria), PloS One, 2008, vol. 3, p. e3222.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gittenberger, A., Reijnen, B.T., and Hoeksema, B.W., A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits, Contrib. Zool., 2011, vol. 80, pp. 107–132.

    Google Scholar 

  8. Granados-Cifuentes, C., Bellantuono, A.J., Ridgway, T., et al., High natural gene expression variation in the reef-building coral Acropora millepora: Potential for acclimative and adaptive plasticity, BMC Genomics, 2013, vol. 14, p. 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hall, T.A., BioEdit: A user-friendly biological alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  10. Hebert, P.D.N., Stoeckle M.Y., Zemlak T.S., et al., Identification of birds through DNA barcodes, PLoS Biol., 2004, vol. 2, pp. 1657–1663.

    Article  CAS  Google Scholar 

  11. Hellberg, M.E., No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation, BMC Evol. Biol., 2006, vol. 6, p. 24.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kitahara, M.V., Cairns, S.D., Stolarski, J., et al., A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data, PLoS One, 2010, vol. 5, p. e11490.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin, M.F., Luzon, K.S., Licuanan, W.Y., et al., Seventy- four universal primers for characterizing the complete mitochondrial genomes of scleractinian corals (Cnidaria; Anthozoa), Zool. Stud., 2011, vol. 50, pp. 513–524.

    CAS  Google Scholar 

  14. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  15. Nylander, J.A.A., MrModeltest 2.0. Uppsala: Evolutionary Biology Centre, Uppsala University, 2004.

    Google Scholar 

  16. Richmond, R.H. and Wolanski, E., Coral research: past efforts and future horizons, in Coral Reefs: An Ecosystem in Transition, Dubinsky, Z. and Stambler, N., Eds., New York: Springer-Verlag, 2011, pp. 3–10.

    Chapter  Google Scholar 

  17. Shearer, T.L., Van Oppen, M.J.H., Romano, S.L., et al., Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria), Mol. Ecol., 2002, vol. 11, pp. 2475–2487.

    Article  CAS  PubMed  Google Scholar 

  18. Stefani, F., Benzoni, F., Pichon, M., et al., Genetic and morphometric evidence for unresolved species boundaries in the coral genus Psammocora (Cnidaria; Scleractinia), Hydrobiologia, 2008, vol. 596, pp. 153–172.

    Article  Google Scholar 

  19. Stolarski, J. and Roniewicz, E., Towards a new synthesis of evolutionary relationships and classification of Scleractinia, J. Paleontol., 2001, vol. 75, pp. 1090–1108.

    Article  Google Scholar 

  20. Stolarski, J., Kitahara, M.V., Miller, D.J., et al., The ancient evolutionary origins of scleractinia revealed by azooxanthellate corals, BMC Evol. Biol., 2011, vol. 11, p. 316.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tamura, K., Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases, Mol. Biol. Evol., 1992, vol. 9, pp. 678–687.

    CAS  PubMed  Google Scholar 

  22. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Woesik, R., Scleractinian taxonomy, in Japan International Cooperation Agency Textbook for Special Training Course of Conservation and Sustainable Management of Coral Reefs, 1995, no. 12, pp. 1–10.

    Google Scholar 

  24. Vaughan, T.W. and Wells, J.W., Revision of the suborders families, and genera of the scleractinia, Spec. Pap., Geol. Soc. Am., 1943, vol. 44, pp. 1–394.

    Google Scholar 

  25. Veron, J.E.N., Corals of the World, Vol. 1–3, Townsville: Australian Institute of Marine Science, 2000.

    Google Scholar 

  26. Zlatarski, V.N. and Stake, J.L., The scleractinian corals: a perspective, Geol. Belg., 2012, vol. 15, pp. 370–375.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Saad Shahbudin.

Additional information

Original Russian Text © Khodzori Fikri Akmal, Saad Shahbudin, Nordin Noor Faizul Hadry, Ku Sulong Ku Abdullah ‘Ulwan, Mat Zain Khairul Amira, 2017, published in Biologiya Morya.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akmal, K.F., Shahbudin, S., Hadry, N.N.F. et al. Taxonomic status of Euphylliidae corals in Peninsular Malaysia based on morphological structures and phylogenetic analyses using mitochondrial COI gene. Russ J Mar Biol 43, 118–126 (2017).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: