Russian Journal of Marine Biology

, Volume 43, Issue 2, pp 101–110 | Cite as

Cephalopods: The potential for their use in medicine

  • N. N. Besednova
  • T. S. Zaporozhets
  • N. N. Kovalev
  • I. D. Makarenkova
  • Yu. M. Yakovlev
Biotechnology
  • 55 Downloads

Abstract

The interest in biologically active substances (BASs) derived from marine organisms is increasing each year. These compounds are used as a basis for creating new medicines, biopreparations applied in food industry and agriculture, as well as for the production of functional foods, biologically active dietary supplements, and cosmetics. Members of the molluscan class Cephalopoda are quite promising objects for the search for new BASs. Moreover, some squid, octopus, and cuttlefish species are characterized by early onset of sexual maturity, a short lifecycle, rapid body weight gain, rapid recovery of abundance, and the ability to form dense aggregations. The substantial resources and the high species diversity make these animals a reliable source of raw materials for large-scale commercial production.

Keywords

biopreparations natural compounds biologically active substances biologically active dietary supplements pharmacology cephalopods squid octopus cuttlefish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arzamastsev, I.S., Yakovlev, Yu.M., Evseev, G.A., et al., Atlas promyslovykh bespozvonochnykh i vodoroslei Dal’nego Vostoka Rossii (Atlas of Commercial Invertebrates and Algae in the Russian Far East), Vladivostok: Avante, 2001.Google Scholar
  2. 2.
    Besednova, N.N. and Epshtein, L.M., Immunoaktivnye peptidy iz gidrobiontov i nazemnykh zhivotnykh (Immunoactive Peptides from Aquatic Organisms and Terrestrial Animals), Vladivostok: TINRO-Tsentr, 2004.Google Scholar
  3. 3.
    Gritsyuk, T.L., Immune disorders and their correction in cancer patients with postoperative complications of surgical interventions, Extended Abstract of Cand. Sci. (Med.) Dissertation, Vladivostok, 2006.Google Scholar
  4. 4.
    Ermolenko, E.V., Sultanov, R.M., Kasyanov, S.P., and Blinov, Yu.G., Complex processing of lipids from liver of the gonatid squid Berryteuthis magister, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2014, vol. 176, pp. 288–294.Google Scholar
  5. 5.
    Zaporozhets, T.S., Cellular and molecular mechanisms of immunomodulatory effects of marine biopolymers from marine organisms, Extended Abstract of Doctoral (Biol.) Dissertation, Vladivostok: Vladivostok State Med. Univ., 2006.Google Scholar
  6. 6.
    Katugin, O.N. and Shevtsov, G.A., Cephalopod mollusks of the Russian Far Eastern Seas and adjacent waters of the Pacific Ocean: the list of species, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2012, vol. 170, pp. 92–98.Google Scholar
  7. 7.
    Katugin, O.N., Yavnov, S.V., and Shevtsov, G.A., Atlas golovonogikh mollyuskov dal’nevostochnykh morei Rossii (Atlas of Cephalopods of the Far Eastern Seas of Russia), Vladivostok: Russkii Ostrov, 2010.Google Scholar
  8. 8.
    Krylova, N.V., Cellular and molecular mechanisms of antiviral protection in tick-borne encephalitis, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 2014.Google Scholar
  9. 9.
    Kuznetsova, T.A., Correction of immunity and hemostasis disorders with biopolymers from marine organisms, Extended Abstract of Doctoral (Med.) Dissertation, Moscow, 2009.Google Scholar
  10. 10.
    Kuznetsova, T.A., Besednova, N.N., Zaporozhets, T.S., et al., A comparative study of immunomodulatory activity of peptides, Tinrostim and Thymalin, Antibiot. Khimioter., 2013, vol. 58, nos. 11–12, pp. 8–12.PubMedGoogle Scholar
  11. 11.
    Kuznetsova, T.A., Kovalev, N.N., Besednova, N.N., et al., Assessment of the effectiveness of gels containing biologically active substances from marine organisms using a thermal burn model, Zdorov’e, Med. Ekol., Nauka, 2014, no. 3, pp. 36–37.Google Scholar
  12. 12.
    Logvinenko, A.A., Effect of the thermally stable toxin of Yersinia pseudotuberculosis on the immune system, Extended Abstract of Cand. Sci. (Med.) Dissertation, Vladivostok, 2000.Google Scholar
  13. 13.
    Sidorenko, S.V., Semina, N.A., Kozlov, R.S., et al., Guidelines for susceptibility testing of microorganisms to antibacterial agents (methodical guidelines MUK 4.2.1890-04), Klin. Mikrobiol. Antimikrob. Khimioter., 2004, no. 1, pp. 306–359.Google Scholar
  14. 14.
    Strizhova, O.A., Loan, N.T.Ch., and Slobodyanik, V.S., Squid as functional ingredients of food from aquatic organisms, Usp. Sovrem. Estestvozn., 2011, no. 7, pp. 212–213.Google Scholar
  15. 15.
    Al-Bari, M.A.A., Sayeed, M.A., Rahman, M.S., and Mossadik, M.A., Characterization and antimicrobial activities of a phthalic acid derivative produced by Streptomyces bangladeshiensis, a novel species collected in Bangladesh, Res. J. Med. Med. Sci., 2006, vol. 1, pp. 77–81.Google Scholar
  16. 16.
    Aluko, R.E., Bioactive peptides, in Functional Foods and Nutraceuticals: Food Science Text Series, New York: Springer–Verlag, 2012, pp. 37–61.CrossRefGoogle Scholar
  17. 17.
    Andres, Y., Giraud, L., Gerente, C., and Le Cloirec, P., Antibacterial effects of chitosan powder: mechanisms of action, Environ. Technol., 2007, vol. 28, no. 12, pp. 1357–1363.CrossRefPubMedGoogle Scholar
  18. 18.
    Arkhipkin, A.I., Rodhouse, P.G.K., Pierce, G.J., et al., World squid fisheries, Rev. Fish. Sci. Aquacult., 2015, vol. 23, no. 2, pp. 92–252.CrossRefGoogle Scholar
  19. 19.
    Balti, R., Bougatef, A., Sila, A., et al., Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats, Food Chem., 2015, vol. 170, pp. 519–525.CrossRefPubMedGoogle Scholar
  20. 20.
    Bharthi, P., Mani, P., and Ramasamy, M., Anti-candidal activities of Sepia aculeata ink extract against multiple resistant Candida albicans causing oral candidiasis, Am. J. Biol. Pharm. Res., 2014, vol. 1, no. 2, pp. 69–73.Google Scholar
  21. 21.
    Chen, S., Wang, J., Xue, C., et al., Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis, Carbohydr. Polym., 2010, vol. 81, no. 3, pp. 560–566.CrossRefGoogle Scholar
  22. 22.
    Choi, J.H., Kim, K.T., and Kim, S.M., Biofunctional properties of enzymatic squid meat hydrolysate, Prev. Nutr. Food Sci., 2015, vol. 20, no. 1, pp. 67–72.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cooke, I.R., Whitelaw, B., Norman, M., et al., Toxicity in cephalopods, in Evolution of Venomous Animals and Their Toxins, Dordrecht: Springer–Verlag, 2015, pp. 1–15.CrossRefGoogle Scholar
  24. 24.
    Davies, J. and Davies, D., Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev., 2010, vol. 74, no. 3, pp. 417–433.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Derby, C.D., Cephalopod ink: production, chemistry, functions and applications, Mar. Drugs, 2014, vol. 12, no. 5, pp. 2700–2730.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Desbois, A.P. and Smith, V.J., Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential, Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 6, pp. 1629–1642.CrossRefPubMedGoogle Scholar
  27. 27.
    Diaz, J.H.J., Thilaga, R.D., and Sivakumar, V., Invitro cytotoxic activity of squid and cuttlefish bone extract on Hep G2 cell line, Int. J. Pharm. Sci. Res., 2015, vol. 6, no. 2, pp. 778–782.Google Scholar
  28. 28.
    Fahmy, S.R., Soliman, A.M., and Ali, E.M., Antifungal and antihepatotoxic effects of Sepia ink extract against oxidative stress as a risk factor of invasive pulmonary aspergillosis in neutropenic mice, Afr. J. Tradit., Complementary Altern. Med., 2014, vol. 11, no. 3, pp. 148–159.CrossRefGoogle Scholar
  29. 29.
    The State of World Fisheries and Aquaculture, Rome: Food Agric. Org., 2012.Google Scholar
  30. 30.
    The State of World Fisheries and Aquaculture, Rome: Food Agric. Org., 2014.Google Scholar
  31. 31.
    Giménez, B., Gómez-Estaca, J., Alemán, A., et al., Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin, Food Hydrocolloids, 2009, vol. 23, no. 5, pp. 1322–1327.CrossRefGoogle Scholar
  32. 32.
    Girija, S., Vijayshree Priyadharshini, J., Pandi Suba, K., et al., Isolation and characterization of LOLDUVIN-S: A novel antimicrobial protein from the ink of Indian squid Loligo duvauceli, Int. J. Curr. Res., 2011, vol. 7, pp. 4–14.Google Scholar
  33. 33.
    Girija, S.A., Vijayshree Priyadharshini, J., Pandi Suba, K., et al., Antibacterial effect of squid ink on ESBL producing strains of Escherichia coli and Klebsiella pneumonia, Indian J. Geo-Mar. Sci., 2012, vol. 41, no. 4, pp. 338–343.Google Scholar
  34. 34.
    Girija, S., Veeramuthu, D., Pandi Suba, K., et al., Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli, Int. Scholarly Res. Not., 2014, art. ID 820745, pp. 1–7.Google Scholar
  35. 35.
    Girija, A.S.S. and Pandi Suba, K., BEHP–A phthalate derivative characterized from the south Indian squid and its anti-HCV like property: An in-vitro and in-silico analysis, Int. J. Pharm. Biol. Sci., 2015, vol. 6, no. 1, pp. 401–410.Google Scholar
  36. 36.
    He, S., Meng, S.N., and Xie, G.L., Study on secretion of interleukin-I induced by cuttlefish ink in mice, Chin. J. Mar. Drugs, 2003, vol. 22, pp. 17–19.Google Scholar
  37. 37.
    Hochberg, F.G. and Fields, G.W., Cephalopoda: the squids and octopuses, Intertidal Invertebrates of California, Stanford: Stanford Univ. Press, 1980, pp. 429–444.Google Scholar
  38. 38.
    Huang, F., Yang, Z., Yu, D., et al., Sepia ink oligopeptide induces apoptosis in prostate cancer cell lines via caspase-3 activation and elevation of Bax/Bcl-2 ratio, Mar. Drugs, 2012, vol. 10, no. 10, pp. 2153–2165.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jing, Y., Yang, Z., Huang, F., et al., Mechanism of Sepia ink polypeptide-induced apoptosis in DU-145 prostate cancer cells, Mod. Food Sci. Technol., 2014, vol. 30, no. 9, pp. 1–6.Google Scholar
  40. 40.
    Karthigayan, S., Balasubashini, S.M., Sengottuvelan, M., et al., Anticancer principles from salivary gland extract of Octopus ageina, Int. J. Cancer Res., 2006, vol. 2, no. 3, pp. 242–252.CrossRefGoogle Scholar
  41. 41.
    Koueta, N., Viala, H., and Le Bihan, E., Applications, uses and by-products from cephalopods, Cephalopod Culture, Netherlands: Springer–Verlag, 2014, pp. 131–147.CrossRefGoogle Scholar
  42. 42.
    Lee, K.M., Shim, H., Lee, G.S., et al., Chitin from the extract of cuttlebone induces acute inflammation and enhances MMP1 expression, Biomol. Ther., 2013, vol. 21, no. 3, pp. 246–250.CrossRefGoogle Scholar
  43. 43.
    Lei, M., Wang, J.F., Wang, Y.M., et al., Study of the radio-protective effect of cuttlefish ink on hemopoietic injury, Asia Pac. J. Clin. Nutr., 2007, vol. 16, no. 1, pp. 239–243.PubMedGoogle Scholar
  44. 44.
    Lim, S.C., Lee, K.M., Kang, T.J., et al., Chitin from cuttlebone activates inflammatory cells to enhance the cell migration, Biomol. Ther., 2015, vol. 23, no. 4, pp. 333–338.CrossRefGoogle Scholar
  45. 45.
    Lin, L.L., Shun, L., and Li, B.F., Angiotensin-I-converting enzyme (ACE)–inhibitory and antihypertensive properties of squid skin gelatine hydrolysates, Food Chem., 2012, vol. 131, no. 1, pp. 225–230.CrossRefGoogle Scholar
  46. 46.
    Liu, N., Chen, X.G., Park, H.J., et al., Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli, Carbohydr. Polym., 2006, vol. 64, pp. 60–65.CrossRefGoogle Scholar
  47. 47.
    Luo, P. and Liu, H., Antioxidant ability of squid ink polysaccharides as well as their protective effects on DNA damage in vitro, Afr. J. Pharm. Pharmacol., 2013, vol. 7, no. 21, pp. 1382–1388.CrossRefGoogle Scholar
  48. 48.
    Nagata, Y., Noguchi, Y., Tamaru, S., et al., Hypolipidemic potential of squid homogenate irrespective of a relatively high content of cholesterol, Lipids Health Dis., 2014, vol. 13, pp. 165–174.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nair, J.R., Pillai, D., Joseph, S.M., et al., Cephalopod research and bioactive substances, Indian J. Geo-Mar. Sci., 2011, vol. 40, no. 1, pp. 13–27.Google Scholar
  50. 50.
    Nirmale, V., Nayak, B.B., Kannappan, S., and Basu, S., Antibacterial effect of the Indian squid, Loligo duvauceli (d’Orbigny), ink, J. Indian Fish. Assoc., 2002, vol. 29, pp. 65–69.Google Scholar
  51. 51.
    Pierce, G.J. and Portela, J., Fisheries production and market demand, Cephalopod Culture, Netherlands: Springer–Verlag, 2014, pp. 41–58.CrossRefGoogle Scholar
  52. 52.
    Rajaganapathi, J., Thyagarajan, S.P., and Edward, J.K., Study on cephalopod’s ink for anti-retroviral activity, Indian J. Exp. Biol., 2000, vol. 38, no. 5, pp. 519–520.PubMedGoogle Scholar
  53. 53.
    Ramasamy, P., Subhapradha, N., Shanmugam, V., and Shanmugam, A., Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885), Int. J. Biol. Macromol., 2014, vol. 64, pp. 202–212.CrossRefPubMedGoogle Scholar
  54. 54.
    Ravichandiran, M., Thiripurasalini, S., Ravitchandirane, V., et al., Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis, J. Coastal Life Med., 2013, vol. 1, no. 4, pp. 273–277.Google Scholar
  55. 55.
    Rodhouse, P.G., World squid resources. Review of the state of world marine fishery resources, FAO Fish. Tech. Pap. no. 457, Rome: F. A. O., 2005, pp. 175–187.Google Scholar
  56. 56.
    Roper, C.F.E., Sweeney, M.J., and Nauen, C.E., Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries, FAO Fish. Synop., 1984, vol. 3, no. 125, pp. 1–277.Google Scholar
  57. 57.
    Russo, G.L., De Nisco, E., Fiore, G., et al., Toxicity of melanin-free ink of Sepia officinalis to transformed cell lines: identification of the active factor as tyrosinase, Biochem. Biophys. Res. Commun., 2003, vol. 308, no. 2, pp. 293–299.CrossRefPubMedGoogle Scholar
  58. 58.
    Samaha-Kfoury, J.N. and Araj, G.F., Recent developments in β lactamases and extended spectrum β lactamases, Br. Med. J., 2003, vol. 327, no. 7425, pp. 1209–1213.CrossRefGoogle Scholar
  59. 59.
    Senan, V.P., Sherief, P.M., and Nair, J.R., Anticancer property of purified fraction C2 of cuttlefish (Sepia pharaonis) ink on cervical cancer cells, Indo Am. J. Pharm. Res., 2013, vol. 3, no. 9, pp. 7444–7454.Google Scholar
  60. 60.
    Senan, V.P., Sherief, P.M., and Nair, J.R., Cytotoxic effect of ink extracts of cuttlefish and squid on chick embryo fibroblasts, Int. J. Pharm. Sci. Res., 2013, vol. 4, no. 5, pp. 1893–1896.Google Scholar
  61. 61.
    Shanmugam, A., Mahalakshmi, T.S., and Barwin Vino, A., Antimicrobial activity of polysaccharide isolated from the cuttlebone of Sepia aculeata (Orbingy, 1848) and Sepia brevimana (Steenstrup, 1875): an approach to selected antimicrobial activity for human pathogenic microorganisms, J. Fish. Aquat. Sci., 2008, vol. 3, no. 5, pp. 268–274.CrossRefGoogle Scholar
  62. 62.
    So, A.D., Gupta, N., Brahmachari, S.K., et al., Towards new business models for R&D for novel antibiotics, Drug Resist. Updates, 2011, vol. 14, no. 2, pp. 88–94.CrossRefGoogle Scholar
  63. 63.
    Subhapradha, N., Ramasamy, P., Seedevi, P., et al., Extraction, characterization and its antioxidant efficacy of polysaccharides from Sepia aculeata (Orbigny, 1848) cuttlebone, Afr. J. Biotechnol., 2014, vol. 13, no. 1, pp. 138–144.CrossRefGoogle Scholar
  64. 64.
    Subhapradha, N., Ramasamy, P., Shanmugam, V., et al., Physicochemical characterisation of β-chitosan from Sepioteuthis lessoniana gladius, Food Chem., 2013, vol. 141, no. 2, pp. 907–913.CrossRefPubMedGoogle Scholar
  65. 65.
    Sykes, A.V., Domingues, P.M., Correia, M., and Andrade, J.P., Cuttlefish culture–State of the art and future trends, Vie Milieu, 2006, vol. 56, no. 2, pp. 129–137.Google Scholar
  66. 66.
    Takaya, Y., Uchisawa, H., Matsue, H., et al., An investigation of the antitumor peptidoglycan fraction from squid ink, Biol. Pharm. Bull., 1994, vol. 17, no. 6, pp. 846–849.CrossRefPubMedGoogle Scholar
  67. 67.
    Vasantharaja, D., Ravitchandirane, V., and Anandan, V., Anti-microbial activity and spectro-chemical investigation of ink extracts of Sepiella inermis (Van Hasselt 1835), Not. Sci. Biol., 2014, vol. 6, no. 3, pp. 273–275.CrossRefGoogle Scholar
  68. 68.
    Vate, N.K. and Benjakul, S., Antioxidative activity of melanin-free ink from splendid squid (Loligo formosana), Int. Aquat. Res., 2013, no. 5, pp. 9–20.CrossRefGoogle Scholar
  69. 69.
    Vino, A.B., Shanmugam, V., and Shanmugam, A., Antimicrobial activity of methanolic extract and fractionated polysaccharide from Loligo duvauceli Orbingy 1848 and Doryteuthis sibogae Adam 1954 on human pathogenic microorganisms, Afr. J. Microbiol. Res., 2014, vol. 8, no. 3, pp. 230–236.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. N. Besednova
    • 1
  • T. S. Zaporozhets
    • 1
  • N. N. Kovalev
    • 2
  • I. D. Makarenkova
    • 1
  • Yu. M. Yakovlev
    • 3
  1. 1.Somov Research Institute of Epidemiology and MicrobiologyVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia
  3. 3.Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations