Skip to main content
Log in

Prospects for the use of sulfated polysaccharides from brown seaweeds as vaccine adjuvants

  • Review
  • Biotechnology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The data from the Russian and foreign literature on the effects of brown seaweed-derived sulfated polysaccharides (fucoidans) used as potential vaccine adjuvants to enhance the anti-infection and anti-tumor immune response are discussed in the present review. Due to their low toxicity, high biocompatibility, safety, and good tolerability by macroorganisms, as well as their mechanisms of immunomodulatory activity, fucoidans can be considered as promising adjuvants to administer in the composition of prophylactic and therapeutic vaccines. Fucoidans are agonists to receptors of innate immunity and are potent inducers of the cellular and humoral immune response, which is an important factor to be taken into account in the development of vaccines against various pathogens, including viruses, as well as anti-tumor vaccines. The results of numerous studies in which sulfated polysaccharides were tested as components of experimental vaccines, as presented in this review, show that these substances can be used as safe and effective adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zvyagintseva, T.N., Besednova, N.N., and Elyakova, L.A., Struktura i immunotropnoye deistvie 1,3;1,6-ß-D-glyukanov (The Structure and Immunotropic Effect of 1,3;1,6-ß-D-Glucans), Vladivostok: Dal’nauka, 2002.

    Google Scholar 

  2. Kuznetsova, T.A., Zaporozhets, T.S., Makarenkova, I.D., et al., Prebiotic properties of polysaccharides from brown seaweed Fucus evanescens and perspectives for clinical using, Tikhookean. Med. Zh., 2012, no. 1, pp. 37–40.

    Google Scholar 

  3. Makarenkova, I.D., Akhmatova, N.K., Semenova, I.B., et al., Sulphated polysaccharides derived from sea brown algae as inducing substances for dendritic cell maturation, Tikhookean. Med. Zh., 2009, no. 3, pp. 36–39.

    Google Scholar 

  4. Makarenkova, I.D., Logunov, D.Yu., Tukhvatulin, A.I., et al., Sulfated polysaccharides of brown seaweeds–ligands of toll-like receptors, Biomed. Khim., 2012, vol. 58, no. 3, pp. 318–325.

    Article  CAS  PubMed  Google Scholar 

  5. Pashchenkov, M.V. and Pinegin, B.V., Physiology of the innate immune system cells: dendritic cells, Immunologiya (Moscow, Russ. Fed.), 2006, no. 6, pp. 368–378.

    Google Scholar 

  6. Khotimchenko, R.Yu., Development of pharmacological agents based on low-molecular-weight pectins and alginates for antitoxic therapy, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2015.

    Google Scholar 

  7. Aguilar, J.C. and Rodrígues, E.G., Vaccine adjuvants revisited, Vaccine, 2007, vol. 25, pp. 3752–3762.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed, A.B., Adel, M., Karimi, P., and Peidayesh, M., Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates, Adv. Food Nutr. Res., 2014, vol. 73, pp. 197–220.

    CAS  PubMed  Google Scholar 

  9. Ale, M.T., Maruyama, H., Tamauchi, H., et al., Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo, Int. J. Biol. Macromol., 2011, vol. 49, pp. 331–336.

    Article  CAS  PubMed  Google Scholar 

  10. Atashrazm, F., Lowenthal, R.M., Woods, G.M., et al., Fucoidan and cancer: a multifunctional molecule with anti-tumor potential, Mar. Drugs, 2015, vol. 13, pp. 2327–2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bagnoli, F., Fontana, M.R., Soldaini, E., et al., Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus, Proc. Nat. Acad. Sci. U. S. A., 2015, vol. 112, pp. 3680–3685.

    CAS  Google Scholar 

  12. Banchereau, J. and Palucka, A.K., Dendritic cells as therapeutic vaccines against cancer, Nat. Rev. Immunol., 2005, vol. 5, pp. 296–306.

    Article  CAS  PubMed  Google Scholar 

  13. Besednova, N.N., Zaporozhets, T.S., Somova, L.M., and Kuznetsova, T.A., Prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter, Helicobacter, 2015, vol. 20, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  14. Casu, B., Naggi, A., and Torri, G., Heparin-derived heparan sulfate mimics to modulate heparan sulfateprotein interaction in inflammation and cancer, Matrix Biol., 2010, vol. 29, pp. 442–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui, W., Zheng, Y., Zhang, Q., et al., Low-molecularweight fucoidan protects endothelial function and ameliorates basal hypertension in diabetic Goto-Kakizaki rats, Lab. Invest., 2014, vol. 94, pp. 382–393.

    Article  CAS  PubMed  Google Scholar 

  16. Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., et al., A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, 2007, vol. 31, no. 2, pp. 541–552.

    Google Scholar 

  17. D’Ayala, G.G., Malinconico, M., and Laurienzo, P., Marine derived polysaccharides for biomedical applications: Chemical modification approaches, Molecules, 2008, vol. 13, pp. 2069–2106.

    Article  PubMed  Google Scholar 

  18. Dorrington, M.G. and Bowdish, D.M., Immunosenescence and novel vaccination strategies for the elderly, Front. Immunol., 2013, vol. 4, Part 171, pp. 1–10.

    Article  CAS  Google Scholar 

  19. Dubensky, T.W., and Reed, S.G., Adjuvants for cancer vaccines, Semin. Immunol., 2010, vol. 22, pp. 155–161.

    Article  CAS  PubMed  Google Scholar 

  20. Fan, X., Bai, L., Zhu, L., et al., Marine algae-derived bioactive peptides for human nutrition and health, J. Agric. Food Chem., 2014, vol. 62, pp. 9211–9222.

    Article  CAS  PubMed  Google Scholar 

  21. Fitton, J.H., Stringer, D.N., and Karpiniec, S.S., Therapies from fucoidan: an update, Mar. Drugs, 2015, vol. 13, pp. 5920–5946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fox, C.B., Friede, M., Reed, S.G., and Ireton, G.C., Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants, Subcell. Biochem., 2010, vol. 53, pp. 303–321.

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi, K., Lee, J.B., Nakano, T., and Hayashi, T., Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity, Microbes Infect., 2013, vol. 15, pp. 302–309.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, H., Ostroff, G.R., Lee, C.K., et al., Distinct patterns of dendritic cell cytokine release stimulated by fungal ß-glucans and Toll-like receptor agonists, Infect. Immun., 2009, vol. 77, pp. 1774–1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Imbs, T.I., Shevchenko, N.M., Semenova, T.L., et al., Compositional heterogeneity of sulfated polysaccharides synthesized by the brown alga Costaria costata, Chem. Nat. Compd., 2011, vol. 47, pp. 96–97.

    Article  CAS  Google Scholar 

  26. Irhimeh, M.R., Fitton, J.H., Lowenthal, R.M., and Kongtawelert, P., A quantitative method to detect fucoidan in human plasma using a novel antibody, Methods Find. Exp. Clin. Pharmacol., 2005, vol. 27, pp. 705–710.

    Article  CAS  PubMed  Google Scholar 

  27. Jang, J.Y., Moon, S.Y., and Joo, H.G., Differential effects of fucoidans with low and high molecular weight on the viability and function of spleen cells, Food Chem. Toxicol., 2014, vol. 68, pp. 234–238.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, Z., Okimura, T., Yamaguchi, K., and Oda, T., The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264.7 cells: comparison between ascophyllan and fucoidan, Nitric Oxide, 2011, vol. 25, pp. 407–415.

    CAS  PubMed  Google Scholar 

  29. Jiao, G., Yu, G., Zhang, J., and Ewart, H.S., Chemical structures and bioactivities of sulfated polysaccharides from marine algae, Mar. Drugs, 2011, vol. 9, pp. 196–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin, J.O. and Yu, Q., Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils, Int. J. Biol. Macromol., 2015, vol. 73, pp. 65–71.

    Article  CAS  PubMed  Google Scholar 

  31. Jin, J.O., Zhang, W., Du, J.Y., et al., Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses, PloS One, 2014, vol. 9, pp. 1–10.

    Article  Google Scholar 

  32. Jo, B.W. and Choi, S.K., Degradation of fucoidans from Sargassum fulvellum and their biological activities, Carbohydr. Polym., 2014, vol. 111, pp. 822–829.

    Article  CAS  PubMed  Google Scholar 

  33. Khotimchenko, M.Y., Kolenchenko, E.A., Khotimchenko, Y.S., et al., Cerium binding activity of different pectin compounds in aqueous solutions, Colloids Surf., B, 2010, vol. 77, pp. 104–110.

    Article  CAS  Google Scholar 

  34. Khozhaenko, E.V., Khotimchenko, R.Y., Kovalev, V.V., Khotimchenko, M.Y., and Podkorytova, E.A., Metal binding activity of pectin isolated from seagrass Zostera marina and its derivatives, Russ. J. Mar. Biol., 2015, vol. 41, no. 6, pp. 485–489.

    Article  CAS  Google Scholar 

  35. Khozhaenko, E., Kovalev, V., Podkorytova, E., and Khotimchenko, M., Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis, Sci. Total Environ., 2016, vol. 565, pp. 913–921.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, S.K. and Himaya, S.W., Medicinal effects of phlorotannins from marine brown algae, Adv. Food Nutr. Res., 2011, vol. 64, pp. 97–109.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, S.Y. and Joo, H.G., Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy, J. Vet. Sci., 2015, vol. 16, pp. 145–150.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kimura, R., Rokkaku, T., Takeda, S., et al., Cytotoxic effects of fucoidan nanoparticles against osteosarcoma, Mar. Drugs, 2013, vol. 11, pp. 4267–4278.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ko, E.J. and Joo, H.G., Fucoidan enhances the survival and sustains the number of splenic dendritic cells in mouse endotoxemia, Korean J. Physiol. Pharmacol., 2011, vol. 15, pp. 89–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuznetsova, T.A., Besednova, N.N., Somova, L.M., and Plekhova, N.G., Fucoidan extracted from Fucus evanescens prevents endotoxin-induced damage in a mouse model of endotoxemia, Mar. Drugs, 2014, vol. 12, pp. 886–898.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee, K.W., Jeong, D., and Na, K., Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment, Carbohydr. Polym., 2013, vol. 94, pp. 850–856.

    Article  CAS  PubMed  Google Scholar 

  42. Lee, S. and Nguyen, M.T., Recent advances of vaccine adjuvants for infectious diseases, Immune Network, 2015, vol. 15, pp. 51–57.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li, L.-J., Li, M.-Y., Li, Y.-T., et al., Adjuvant activity of Sargassum pallidum polysaccharides against combined Newcastle disease, infectious bronchitis and avian influenza inactivated vaccines, Mar. Drugs, 2012, vol. 10, pp. 2648–2660.

    CAS  PubMed  Google Scholar 

  44. Lin, C.C., Pan, I.H., Li, Y.R., et al., The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines, PloS One, 2015, vol. 10, pp. 1–22.

    Google Scholar 

  45. Lira, M.C., Santos-Magalhães, N.S., Nicolas, V., et al., Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles, Eur. J. Pharm. Biopharm., 2011, vol. 79, pp. 162–170.

    Article  CAS  PubMed  Google Scholar 

  46. Lynch, M.B., Sweeney, T., Callan, J.J., et al., The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility,nitrogen utilisation,intestinal microflora and volatile fatty acid concentration in pigs, J. Sci. Food Agric., 2010, vol. 90, pp. 430–437.

    CAS  PubMed  Google Scholar 

  47. Nagamine, T., Hayakawa, K., Nakazato, K., and Iho, M., Determination of the active transport of fucoidan derived from Okinawa mozuku across the human intestinal caco-2 cells as assessed by size-exclusion chromatography, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2015, vol. 997, pp. 187–193.

    Article  CAS  Google Scholar 

  48. Nagamine, T., Nakazato, K., Tomioka, S., et al., Intestinal absorption of fucoidan extracted from the brown seaweed, Cladosiphon okamuranus, Mar. Drugs, 2014, vol. 13, pp. 48–64.

    Article  PubMed  Google Scholar 

  49. Negishi, H., Mori, M., Mori, H., and Yamori, Y., Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination, J. Nutr., 2013, vol. 143, pp. 1794–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ngo, D.H. and Kim, S.K., Sulfated polysaccharides as bioactive agents from marine algae, Int. J. Biol. Macromol., 2013, vol. 62, pp. 70–75.

    Article  CAS  PubMed  Google Scholar 

  51. O’Doherty, J.V., Dillon, S., Figat, S., et al., The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs, Anim. Feed Sci. Technol., 2010, vol. 157, pp. 173–180.

    Article  Google Scholar 

  52. Petrovsky, N. and Aguilar, J.C., Vaccine adjuvants: current state and future trends, Immunol. Cell Biol., 2004, vol. 82, pp. 488–496.

    Article  CAS  PubMed  Google Scholar 

  53. Pomin, V.H., Marine non-glycosaminoglycan sulfated glycans as potential pharmaceuticals, Pharmaceuticals, 2015, vol. 8, pp. 848–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raposo, M.F.J., Morais, A.M.B.M., and Morais, R.M.S.C., Marine polysaccharides from algae with potential biomedical applications, Mar. Drugs, 2015, vol. 13, pp. 2967–3028.

  55. Reed, S.G., Orr, M.T., and Fox, C.B., Key roles of adjuvants in modern vaccines, Nat. Med., 2013, vol. 19, pp. 1597–1608.

    Article  CAS  PubMed  Google Scholar 

  56. Rioux, L.E., Turgeon, S.L., and Beaulieu, M., Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris, Phytochemistry, 2010, vol. 71, pp. 1586–1595.

    Article  CAS  PubMed  Google Scholar 

  57. Saade, F., Honda-Okubo, Y., Trec, S., and Petrovsky, N., A novel hepatitis B vaccine containing Advax™, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing, Vaccine, 2013, vol. 31, no. 15, pp. 1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shaw, C.A. and Petrik, M.S., Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration, J. Inorg. Biochem., 2009, vol. 103, pp. 1555–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shu, Z., Shi, X., Nie, D., and Guan, B., Low-molecular- weight fucoidan inhibits the viability and invasiveneßs and triggers apoptosis in IL-1ß-treated human rheumatoid arthritis fibroblast synoviocytes, Inflammation, 2015, vol. 38, pp. 1777–1786.

    Article  CAS  PubMed  Google Scholar 

  60. Sivakumar, S.M., Safhi, M.M., Kannadasan, M., and Sukumaran, N., Vaccine adjuvants–Current status and prospects on controlled release adjuvancity, Saudi Pharm. J., 2011, vol. 19, pp. 197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Skriptsova, A.V., Shevchenko, N.M., Imbs, T.I., and Zvyagintseva, T.N., Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida, J. Appl. Phycol., 2010, vol. 22, no. 1, pp. 79–86.

    Article  CAS  Google Scholar 

  62. Stills, H.F., Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants, ILAR J., 2005, vol. 46, no. 3, pp. 280–293.

    Article  CAS  PubMed  Google Scholar 

  63. Strand, A., The Japanese “longevity”, Life Ext. Mag., 2015, vol. 9. http://www.lifeextension.com/magazine/. Cited January 15, 2016.

    Google Scholar 

  64. Synytsya, A., Bleha, R., Synytsya, A., and Hayashi, T., Mekabu fucoidan: structural complexity and defensive effects against avian influenza A viruses, Carbohydr. Polym., 2014, vol. 111, pp. 633–644.

    Article  CAS  PubMed  Google Scholar 

  65. Takeda, K. and Akira, S., Toll-like receptors in innate immunity, Int. Immunol., 2005, vol. 17, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

  66. Teruya, T., Takeda, S., Tamaki, Y., and Tako, M., Fucoidan isolated from Laminaria angustata var. longissima induced macrophage activation, Biosci., Biotechnol., Biochem., 2010, vol. 74, pp. 1960–1962.

    Article  CAS  Google Scholar 

  67. Tokita, Y., Nakajima, K., Mochida, H., et al., Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA, Biosci., Biotechnol., Biochem., 2010, vol. 74, pp. 350–357.

    Article  CAS  Google Scholar 

  68. Ushakova, N.A., Morozevich, G.E., Ustyuzhanina, N.E., et al., Anticoagulant activity of fucoidans from brown algae, Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 2009, no. 3, pp. 77–83.

    Article  Google Scholar 

  69. Ustyuzhanina, N.E., Bilan, M.I., Gerbst, A.G., et al., Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea, Carbohydr. Polym., 2016, vol. 136, pp. 826–833.

    Article  CAS  PubMed  Google Scholar 

  70. Vogel, F.R. and Hem, S.L., Immunologic adjuvants. General aspects of vaccination, in Vaccines, 5th ed., Saunders Elsevier, 2008, Sect. 1, pp. 59–69.

    Google Scholar 

  71. Zhang, W., Du, J.Y., Jiang, Z., et al., Ascophyllan purified from Ascophyllum nodosum induces Th1 and Tc1 immune responses by promoting dendritic cell maturation, Mar. Drugs, 2014, vol. 12, pp. 4148–4164.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang, W., Oda, T., Yu, Q., and Jin, J.O., Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans, Mar. Drugs, 2015, vol. 13, pp. 1084–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kuznetsova.

Additional information

Original Russian Text © T.A. Kuznetsova, T.S. Zaporozhets, E.V. Persianova, Yu.S. Khotimchenko, N.N. Besednova, 2016, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, T.A., Zaporozhets, T.S., Persianova, E.V. et al. Prospects for the use of sulfated polysaccharides from brown seaweeds as vaccine adjuvants. Russ J Mar Biol 42, 443–450 (2016). https://doi.org/10.1134/S1063074016060055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074016060055

Keywords

Navigation