Skip to main content
Log in

The influence of viruses on bacterioplankton of the offshore and coastal parts of the Barents Sea

  • Planktonology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The viral and bacterioplankton communities of the Barents Sea were investigated using a combination of methods of electron and epifluorescence microscopy for the first time. The quantitative composition of the communities and the nature of their interactions were also determined. Our study showed that during the summer the abundance and biomass of bacterioplankton reached 0.4–4.0 × 106 cells/mL and 25.09–84.21 mg/m3 in offshore waters and 0.4–1.8 × 106 cells/mL and 19.63–100.19 mg/m3 in coastal waters, respectively. In both regions, the number of viruses (1.7–35.8 × 106 and 14.5–32.4 × 106 particles/mL) exceeded the number of bacteria by 2–31 and 13–60 times, respectively; the average viral production was 0.75106 and 1.74 × 106 particles/mL/day, respectively. The proportion of infected cells in the total bacterioplankton (7% on average) and virus-induced mortality of bacteria (8%) were much lower in offshore than in coastal waters (14 and 20%, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baitaz, V.A., Baitaz, O.N., and Mishustina, I.E., Morphometry of cells of bacterioplankton of the Barents Sea, Dokl. Ross. Akad. Nauk, 1995, vol. 343, no. 6, pp. 883–887.

    Google Scholar 

  2. Baitaz, O.N., Spatial and Temporal Variations of Bacterioplankton of the Barents Sea, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1998.

    Google Scholar 

  3. Venger, M.P., Bacterioplankton of the northeastern Barents Sea, Vestn. Yuzh. Nauchn. Tsentr, Ross. Akad. Nauk, 2011, vol. 7, no. 4, pp. 55–60.

    Google Scholar 

  4. Dvoretsky, V.G., Venger, M.P., Makarevich, P.R., and Moiseev, D.V., Summer bacterioand zooplankton in coastal waters of Svalbard, Russ. J. Mar. Biol., 2012, vol. 38, no. 1, pp. 91–95.

    Article  Google Scholar 

  5. Zhizn’ i usloviya ee sushchestvovaniya v pelagiali Barentseva morya (Life and Conditions of Its Existence in the Pelagic Zone of the Barents Sea), Apatity: Kolsk. Fil. Akad. Nauk SSSR, 1985.

  6. Kopylov, A.I., Kosolapov, D.B., and Zabotkina, E.A., Virus impact on heterotrophic bacterioplankton of water reservoirs, Microbiology (Moscow), 2011, vol. 80, no. 2, pp. 228–236.

    Article  CAS  Google Scholar 

  7. Kopylov, A.I., Kosolapov, D.B., Zabotkina, E.A., et al., Planktonic viruses, heterotrophic bacteria, and nanoflagellates in fresh and coastal marine waters of the Kara Sea basin (the Arctic), Inland Water Biol., 2012, vol. 5, no. 3, pp. 241–249.

    Article  Google Scholar 

  8. Mishustina, I.E., Baitaz, O.N., and Moskvina, M.I., Bacterioplankton of the Barents Sea. Investigations during the years 1983–1993, in Plankton morei Zapadnoi Arktiki (Plankton of the Western Arctic Seas), Apatity: Kolsk. Nauchn. Tsentr, Ross. Akad. Nauk, 1997, pp. 7–50.

    Google Scholar 

  9. Pirt, S.J., Principles of Microbe and Cell Cultivation, New York Wiley, 1975.

    Google Scholar 

  10. Sazhin, A.F., Romanova, N.D., and Mosharov, S.A., Bacterial and primary production in the pelagic zone of the Kara Sea, Oceanology (Engl. Transl.), 2010, vol. 50, no. 5, pp. 801–808.

    CAS  Google Scholar 

  11. Ekologiya i produktivnost’ Barentseva morya (Ecology and Productivity of the Barents Sea), Moscow: Nauka, 1990.

  12. Anderson, M.R. and Rivkin, R.B., Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison, Aquat. Microb. Ecol., 2001, vol. 25, no. 2, pp. 195–206.

    Article  Google Scholar 

  13. Binder, B., Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells, Aquat. Microb. Ecol., 1999, vol. 18, pp. 207–215.

    Article  Google Scholar 

  14. Boras, J.A., Sala, M.M., Arrieta, J.M., and Sa, E.L., Effect of ice melting on bacterial carbon fluxes channeled by viruses and protists in the Arctic Ocean, Polar Biol., 2010, vol. 33, pp. 1695–1707.

    Article  Google Scholar 

  15. Clasen, J.L., Brigden, S.M., Payet, J.P., and Suttle, C.A., Evidence that viral abundance across oceans and lakes is driven by different biological factors, Freshwater Biol., 2008, vol. 53, pp. 1090–1100.

    Article  CAS  Google Scholar 

  16. Cota, G.F., Pomeroy, L.R., Harrison, W.G., et al., Nutrients, primary production and microbial heterotrophs in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy, Mar. Ecol.: Progr. Ser., 1996, vol. 135, pp. 247–258.

    Article  Google Scholar 

  17. Hodges, L.R., Bano, N., Hollibaugh, J.T., and Yager, P., Illustrating the importance of particulate organic matter to pelagic microbial abundance and community structure—an Arctic case study, Aquat. Microb. Ecol., 2005, vol. 40, pp. 217–227.

    Article  Google Scholar 

  18. Howard-Jones, M.H., Ballard, V.D., Allen, A.E., et al., Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer, J. Mar. Syst., 2002, vol. 38, pp. 77–91.

    Article  Google Scholar 

  19. Middelboe, M., Nielsen, T., and Bjornsen, P., Viral and bacterial production in the North Water: in situ measurements, batch-culture experiments and characterization and distribution of a virus-host system, Deep-Sea Res., Part II, 2002, vol. 49, pp. 5063–5079.

    Article  Google Scholar 

  20. Murray, A.G. and Jackson, G.A., Viral dynamics: a model of the effects of single-celled planktonic organisms and other particles, Mar. Ecol.: Progr. Ser., 1992, vol. 14, pp. 113–118.

    Google Scholar 

  21. Noble, R.T. and Fuhrman, J.A., Use of SYBR Green for rapid epifluorescence count of marine viruses and bacteria, Aquat. Microb. Ecol., 1998, vol. 14, pp. 113–118.

    Article  Google Scholar 

  22. Payet, J.P. and Suttle, C.A., Physical and biological correlates of virus dynamics in the southern Beaufort Sea and Amundsen Gulf, J. Mar. Syst., 2008, vol. 74, pp. 933–945.

    Article  Google Scholar 

  23. Payet, J.P. and Suttle, C.A., To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status, Limnol. Oceanogr., 2013, vol. 58, no. 2, pp. 465–474.

    Google Scholar 

  24. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  25. Proctor, L.M., Okubo, A., and Fuhrman, J.A., Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments, Microb. Ecol., 1993, vol. 25, pp. 161–182.

    Article  CAS  PubMed  Google Scholar 

  26. Sherr, E.B., Sherr, B.F., Wheeler, P.A., et al., Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean, Deep-Sea Res., Part I, 2003, vol. 50, pp. 557–571.

    Article  Google Scholar 

  27. Simek, K., Pernthaler, J., Weinbauer, M.G., et al., Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesotrophic reservoir, Appl. Environ. Microbiol., 2001, vol. 67, no. 6, pp. 2723–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steward, G.F., Fandino, L.B., Hollibaugh, J.T., et al., Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean, Deep-Sea Res., Part I, 2007, vol. 54, pp. 1744–1757.

    Article  Google Scholar 

  29. Steward, G.F., Smith, D.C., and Azam, F., Abundance and production of bacteria and viruses in the Bering and Chukchi seas, Mar. Ecol.: Progr. Ser., 1996, vol. 131, pp. 287–300.

    Article  Google Scholar 

  30. Tammert, H., Olli, K., Sturluson, M., and Hodal, H., Bacterial biomass and activity in the marginal ice zone of the northern Barents Sea, Deep-Sea Res., Part II, 2008, vol. 55, pp. 2199–2209.

    Article  CAS  Google Scholar 

  31. Weinbauer, M.G., Ecology of prokaryotic viruses, FEMS Microbiol. Rev., 2004, vol. 28, no. 2, pp. 127–181.

    Article  CAS  PubMed  Google Scholar 

  32. Winter, C., Herndl, G.J., and Weinbauer, M.G., Diel cycles in viral infection of bacterioplankton in the North Sea, Aquat. Microb. Ecol., 2004, vol. 35, pp. 207–216.

    Article  Google Scholar 

  33. Wommack, K.E. and Colwell, R.R., Viruses in aquatic ecosystems, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 1, pp. 69–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Venger.

Additional information

Original Russian Text © M.P. Venger, A.I. Kopylov, E.A. Zabotkina, P.R. Makarevich, 2016, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venger, M.P., Kopylov, A.I., Zabotkina, E.A. et al. The influence of viruses on bacterioplankton of the offshore and coastal parts of the Barents Sea. Russ J Mar Biol 42, 26–35 (2016). https://doi.org/10.1134/S106307401601017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307401601017X

Keywords

Navigation